精英家教网 > 初中数学 > 题目详情

【题目】如图,在地面上竖直安装着ABCDEF三根立柱,在同一时刻同一光源下立柱ABCD形成的影子为BGDH.

1)填空:判断此光源下形成的投影是: 投影.

2)作出立柱EF在此光源下所形成的影子.

【答案】1)中心;(2)如图,线段FI为此光源下所形成的影子. 见解析

【解析】

1)根据中心投影的定义“由同一点(点光源)发出的光线形成的投影叫做中心投影”即可得;

2)如图(见解析),先通过ABCD的影子确认光源O的位置,再作立柱EF在光源O下的投影即可.

1)由中心投影的定义得:此光线下形成的投影是:中心投影

故答案为:中心;

2)如图,连接GAHC,并延长相交于点O,则点O就是光源,再连接OE,并延长与地面相交,交点为I,则FI为立柱EF在此光源下所形成的影子.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2+bx+6经过点A(﹣30)和点B20),直线yhh为常数,且0h6)与BC交于点D,与y轴交于点E,与AC交于点F

1)求抛物线的解析式;

2)连接AE,求h为何值时,△AEF的面积最大.

3)已知一定点M(﹣20),问:是否存在这样的直线yh,使△BDM是等腰三角形?若存在,请求出h的值和点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在以O为原点的直角坐标系中,矩形OABC的两边OCOA分别在x轴、y轴的正半轴上,反比例函数yx0)的图象与AB相交于点D,与BC相交于点E,若BD3AD,且ODE的面积为30,则k的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQBC交于点G,求△EBG的周长是__________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某汽车专卖店经销某种型号的汽车已知该型号汽车的进价为10万元/辆,经销一段时间后发现:当该型号汽车售价定为20万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1

1)若每辆汽车的售价降低x万元,则每周的销售量是   辆(用含x的代数式表示)

2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,需将每辆汽车的售价降低多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边ADy轴,垂足为点E,顶点A在第二象限,顶点By轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为(  )

A. B. 3 C. D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5y轴交于点A,与x轴的正半轴交于点C.

(1)求直线AC解析式;

(2)过点AAD平行于x轴,交抛物线于点D,点F为抛物线上的一点(FAD上方),作EF平行于y轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;

(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.如图,在ABC中,ABAC,点DE分别在ABAC上,设CDBE相交于点O,如果∠A是锐角,∠DCB=∠EBCA.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线经过点ABC,已知A-10),B30),C0-3.

1)求此抛物线的函数表达式;

2)若P为线段BC上一点,过点P轴的平行线,交抛物线于点D,当△BCD面积最大时,求点P的坐标;

3)若Mm0)是轴上一个动点,请求出CM+MB的最小值以及此时点M的坐标.

查看答案和解析>>

同步练习册答案