精英家教网 > 初中数学 > 题目详情

【题目】在四边形ABCD中,∠B=∠C=90°,AB=3,BC=4,CD=1.以AD为腰作等腰ADE,使ADE=90°,过点E作EFDC交直线CD于点F.请画出图形,并直接写出AF的长.

【答案】2或2

【解析】

如图,分两种情况讨论,E点可在AD的上方,由已知条件可证的△ADM≌△EDF,可得DF=DM,后可求得FN的长,可求得AF的长;

E点可在AD的下方,同理可证△ADN≌△DEF,可得DF=DM,可求得FN的长后的AF的长.

如图1中,作ANCF于N,DMAB于M.

∵∠B=∠C=∠DMB=90°,

四边形BCDM是矩形,易证四边形AMDN是矩形,

∴CD=BM=1,AM=AB﹣BM=2,DM=BC=AN=4,DN=AM=2,

∵∠AMD=∠DFE,∠ADM=∠FDE,DA=DE,

∴△ADM≌△EDF,

∴DF=DM=4,

∴FN=DF﹣DN=2,

在RtAFN中,AF==2

如图2中,作ANFD交FD的延长线于N.

易证AN=BC=4,△ADN≌△DEF,

∴DF=AN=4,DN=CN﹣CD=2,

∴FN=6,

在RtAFN中,AF==2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在甲村至乙村的公路旁有一块山地正在开发,现有一处需要爆破.已知点与公路上的停靠站的距离为米,与公路上另一停靠站的距离为米,且,如图,为了安全起见,爆破点周围半径米范围内不得进入,问在进行爆破时,公路段是否有危险,是否需要暂时封锁?请通过计算进行说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】端午节期间,甲、乙两人沿同一路线行驶,各自开车同时去离家千米的景区游玩,甲先以每小时千米的速度匀速行驶小时,再以每小时千米的速度匀速行驶,途中休息了一段时间后,仍按照每小时千米的速度匀速行驶,两人同时到达目的地,图中折线、线段分别表示甲、乙两人所走的路程与时间之间的函数关系的图象请根据图象提供的信息,解决下列问题:

1)乙的速度为:_______

2)图中点的坐标是________

3)图中点的坐标是________

4)题中_________

5)甲在途中休息____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t秒(t>0).

(1)当t=1时,KE=_____,EN=_____

(2)当t为何值时,△APM的面积与△MNE的面积相等?

(3)当点K到达点N时,求出t的值;

(4)当t为何值时,△PKB是直角三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,下列结论中:

①abc<0;②9a﹣3b+c<0;③b2﹣4ac>0;④a>b,

正确的结论是_____(只填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形ABCD,点F是射线DC上一动点(不与CD重合).连接AF并延长交直线BC于点E,交BDH,连接CH,过点CCGHCAE于点G

1)若点F在边CD上,如图1

①证明:∠DAH=DCH

②猜想:△GFC的形状并说明理由.

2)取DF中点M,连接MG.若MG=2.5,正方形边长为4,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某书店现有资金7700元,计划全部用于购进甲、乙、丙三种图书共20套,其中甲种图书每套500元,乙种图书每套400元,丙种图书每套250元.书店将甲、乙、丙三种图书的售价分别定为每套550元,430元,310元.设书店购进甲种图书x套,乙种图书y套,请解答下列问题:

(1)请求出y与x的函数关系式(不需要写出自变量的取值范围);

(2)若书店购进甲、乙两种图书均不少于1套,则该书店有几种进货方案?

(3)在(1)和(2)的条件下,根据市场调查,书店决定将三种图书的售价作如下调整:甲种图书的售价不变,乙种图书的售价上调a(a为正整数)元,丙种图书的售价下调a元,这样三种图书全部售出后,所获得的利润比(2)中某方案的利润多出20元,请直接写出书店是按哪种方案进的货及a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图显示了用计算机模拟随机投掷一枚图钉的某次实验的结果.下面有三个推断:某次实验投掷次数是500,计算机记录“钉尖向上”的次数是308,则该次试验“钉尖向上”的频率是0.616;随着实验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;若再次用计算机模拟实验,则当投掷次数为1000时,“钉尖向上”的概率一定是0.620.其中合理的是(  )

A. ①② B. ②③ C. ①③ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+2ax+cx轴于AB两点,交y轴于点C03),tan∠OAC=

1)求抛物线的解析式;

2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;

3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案