精英家教网 > 初中数学 > 题目详情

【题目】两个工程队共同参与一项筑路工程,若先由甲、乙两队合作天,剩下的工程再由乙队单独做天可以完成,共需施工费万元;若由甲、乙合作完成此项工程共需天,共需施工费万元.

1)求乙队单独完成这项工程需多少天?

2)甲、乙两队每天的施工费各为多少万元?

3)若工程预算的总费用不超过万元,则乙队最少施工多少天?

【答案】1)乙队单独完成这项工程需90天;(2)甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)乙队最少施工30

【解析】

1)设乙队单独完成这项工程需x天,根据“甲、乙合作30天的工作量+乙队15天的工作量=1”列分式方程即可;

2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元,根据题意列二元一次方程组即可求出ab的值;

3)先求出甲的效率,设乙队施工y天,则甲队还需施工天完成任务,然后根据“总费用不超过万元”列出不等式即可得出结论.

解:(1)设乙队单独完成这项工程需x

由题意可得:

解得:x=90

经检验:x=90是原方程的解

答:乙队单独完成这项工程需90天.

2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元

由题意可知:

解得:

答:甲队每天的施工费为15万元,乙队每天的施工费为8万元.

3)甲的效率为

设乙队施工y天,则甲队还需施工天完成任务

根据题意可得15×8y840

解得:y30

答:乙队最少施工30天.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,PB与⊙O相切于点B,过点BOP的垂线BA,垂足为C,交⊙O于点A,连结PAAOAO的延长线交⊙O于点E,与PB的延长线交于点D

1)求证:PA是⊙O的切线;

2)若tanBAD=,且OC=4,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则yx的函数关系式为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为1的小正方形组成的正方形网格中,建立如图所示的平面真角坐标系,已知格点三角形(三角形的三个顶点都在格点上)

1)画出关于直线对称的;并写出点的坐标.

2)在直线上找一点,使最小,在图中描出满足条件的点(保留作图痕迹),并写出点的坐标(提示:直线是过点且垂直于轴的直线)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:如图,点为线段外一动点,且,若,连接,求的最大值.解决方法:以为边作等边,连接,推出,当点的延长线上时,线段取得最大值

问题解决:如图,点为线段外一动点,且,若,连接,当取得最大值时,的度数为_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点上一点.

1)如图平分.求证:

2)如图,点在线段上,且,求证:

3)如图,过点作的延长线于点,连接,过点作,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图正方形ABCD的边长为6,E、F分别在AB,ADCE=3且∠ECF=45°,CF长为(

A. 2 B. 3 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】校园安全受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有   人,扇形统计图中基本了解部分所对应扇形的圆心角为   度;

(2)请补全条形统计图;

(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到了解基本了解程度的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某通讯公司推出①②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x()与费用y()之间的函数关系如图所示.

(1)有月租的收费方式是________(”),月租费是________元;

(2)分别求出①②两种收费方式中y与自变量x之间的函数表达式;

(3)请你根据用户通讯时间的多少,给出经济实惠的选择建议.

查看答案和解析>>

同步练习册答案