精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为1的小正方形组成的网格中,给出了格点四边形ABCD(顶点为网格线的交点).

1)画出四边形ABCD关于x轴成轴对称的四边形A1B1C1D1

2)以O为位似中心,在第三象限画出四边形ABCD的位似四边形A2B2C2D2,且位似比为1

3)在第一象限内找出格点P,使∠DCP=CDP,并写出点P的坐标(写出一个即可).

【答案】1)画图见解析;(2)画图见解析;(3)点P53)或(22

【解析】

1)分别作出点ABCD关于x轴对称点,顺次连接即可;

2)利用位似图形的性质,延长AOA2,使AO=OA2,同理分别作出BCD的对应点,顺次连接即可;

3)由∠DCP=∠CDPPC=PD,即点P在线段CD的垂直平分线上,即可找到符合条件的点P

1)如图所示,四边形A1B1C1D1就是所求作的图形;

2)如图所示,四边形A2B2C2D2就是所求作的图形;

(3)由图可知,点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线yx+cx轴交于点B40),与y轴交于点C,抛物线yx2+bx+c经过点BC,与x轴的另一个交点为点A

1)求抛物线的解析式;

2)点P是直线BC下方的抛物线上一动点,求四边形ACPB的面积最大时点P的坐标;

3)若点M是抛物线上一点,请直接写出使∠MBCABC的点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的边长为,延长使,以为边长在上方作正方形,延长,连接的中点,连接分别与交于点.则下列结论:①;②;③;④.其中正确的结论有(

A.①②B.①④C.②③D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,的中线,上一动点,将沿折叠,点落在点处,与线段交于点,若是直角三角形,则_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线yax2x+cx轴于AB两点,交y轴于点C.直线y=﹣x+3经过点BC

1)求抛物线的解析式;

2)若点P为直线BC下方的抛物线上一动点(不与点BC重合),则△PBC的面积能够等于△BOC的面积吗?若能,求出相应的点P的坐标;若不能,请说明理由;

3)如图2,现把△BOC平移至如图所示的位置,此时三角形水平方向一边的两个端点点O与点B都在抛物线上,称点O和点B为△BOC在抛物线上的一卡点对;如果把△BOC旋转一定角度,使得其余边位于水平方向然后平移,能够得到这个三角形在抛物线上新的卡点对.请直接写出△BOC在已知抛物线上所有卡点对的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数y=x2-2mx-m24m-2的对称轴为l,抛物线与y轴交于点C,顶点为D

1)判断抛物线与x轴的交点情况;

2)如图1,当m=1时,点P为第一象限内抛物线上一点,且PCD是以PD为腰的等腰三角形,求点P的坐标;

3)如图2,直线和抛物线交于点AB两点,与l交于点M,且MO=MB,点Qx0y0)在抛物线上,当m1时,时,求h的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数与反比例函数的图象交于点

1)求反比例函数和一次函数的解析式;

2)点是线段上一点,过点轴于点,交反比例函数图象于点,连接,若的面积为,求点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知二次函数图象的顶点为A,与y轴交于点B,异于顶点A的点C(1n)在该函数图象上.

1)当m=5时,求n的值.

2)当n=2时,若点A在第一象限内,结合图象,求当y时,自变量x的取值范围.

3)作直线ACy轴相交于点D.当点Bx轴上方,且在线段OD上时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BC是⊙O的直径,CE是⊙O的弦,过点E作⊙O的切线,交CB的延长线于点G,过点BBFGE于点F,交CE的延长线于点A

1)求证:∠ABG2C

2)若GF3GB6,求⊙O的半径.

查看答案和解析>>

同步练习册答案