精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知二次函数图象的顶点为A,与y轴交于点B,异于顶点A的点C(1n)在该函数图象上.

1)当m=5时,求n的值.

2)当n=2时,若点A在第一象限内,结合图象,求当y时,自变量x的取值范围.

3)作直线ACy轴相交于点D.当点Bx轴上方,且在线段OD上时,求m的取值范围.

【答案】1)-421≤x≤530≤m11m2

【解析】

1)利用待定系数法求解即可.

2)求出时,的值即可判断.

3)由题意点的坐标为,求出几个特殊位置的值即可判断.

解:(1)当时,

时,

2)当时,将代入函数表达式,得

解得(舍弃),

此时抛物线的对称轴

根据抛物线的对称性可知,当时,5

的取值范围为

3与点不重合,

抛物线的顶点的坐标是

抛物线的顶点在直线上,

时,

的坐标为

抛物线从图1的位置向左平移到图2的位置,逐渐减小,点沿轴向上移动,

当点重合时,

解得

当点与点重合时,如图2,顶点也与重合,点到达最高点,

,解得

当抛物线从图2的位置继续向左平移时,如图3不在线段上,

点在线段上时,的取值范围是:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将直角三角形纸片)沿过点A的直线折叠,使得AC落在AB边上折痕为AD,展开纸片(如图1);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到(如图2),若,则折痕EF的长为(

A.B.C.D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的网格中,给出了格点四边形ABCD(顶点为网格线的交点).

1)画出四边形ABCD关于x轴成轴对称的四边形A1B1C1D1

2)以O为位似中心,在第三象限画出四边形ABCD的位似四边形A2B2C2D2,且位似比为1

3)在第一象限内找出格点P,使∠DCP=CDP,并写出点P的坐标(写出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数Cy=(x2220≤x≤3),点P在二次函数C的图象上,点Ax轴正半轴上一点,若tanAOP1,则点P的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线Cyx[ax1+x+1]a为任意实数).

1)无论a取何值,抛物线C恒过定点      

2)当a1时,设抛物线C在第一象限依次经过的整数点(横、纵坐标均为整数的点)为A1A2……An,将抛物线C沿着直线yxx≥0)平移,将平移后的抛物线记为C n,抛物线C n经过点AnC n的顶点坐标为Mnn为正整数且n12n,例如n1时,抛物线C1经过点A1C1的顶点坐标为M1).

①抛物线C2的解析式为   ,顶点坐标为   

②抛物线C1上是否存在点P,使得PM1A2M2?若存在,求出点P的坐标,并判断四边形PM1M2A2的形状;若不存在,请说明理由.

③直接写出Mn1Mn两顶点间的距离:   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=,∠B=45°,∠C=60°

1)求BC边上的高线长.

2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF

①如图2,当点P落在BC上时,求∠AEP的度数.

②如图3,连结AP,当PFAC时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知二次函数图象的顶点为A,与y轴交于点B,异于顶点A的点C(1n)在该函数图象上.

1)当m=5时,求n的值.

2)当n=2时,若点A在第一象限内,结合图象,求当y时,自变量x的取值范围.

3)作直线ACy轴相交于点D.当点Bx轴上方,且在线段OD上时,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的半径为5cm,弦ABcmCDcm,则弦ACBD的夹角∠APB的度数为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们知道,如图1ABO的弦,点F的中点,过点FEFAB于点E,易得点EAB的中点,即AEEBO上一点CACBC),则折线ACB称为O的一条“折弦”.

1)当点C在弦AB的上方时(如图2),过点FEFAC于点E,求证:点E是“折弦ACB”的中点,即AEEC+CB

2)当点C在弦AB的下方时(如图3),其他条件不变,则上述结论是否仍然成立?若成立说明理由;若不成立,那么AEECCB满足怎样的数量关系?直接写出,不必证明.

3)如图4,已知RtABC中,∠C90°,∠BAC30°,RtABC的外接圆O的半径为2,过O上一点PPHAC于点H,交AB于点M,当∠PAB45°时,求AH的长.

查看答案和解析>>

同步练习册答案