精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.

(1)求该二次函数的解析式及点M的坐标;
(2)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;
(3)点P是直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).

【答案】
(1)解:把点A(3,1),点C(0,4)代入二次函数y=﹣x2+bx+c得,

解得

∴二次函数解析式为y=﹣x2+2x+4,

配方得y=﹣(x﹣1)2+5,

∴点M的坐标为(1,5);


(2)解:设直线AC解析式为y=kx+b,把点A(3,1),C(0,4)代入得,

解得

∴直线AC的解析式为y=﹣x+4,如图所示,对称轴直线x=1与△ABC两边分别交于点E、点F

把x=1代入直线AC解析式y=﹣x+4解得y=3,则点E坐标为(1,3),点F坐标为(1,1)

∴1<5﹣m<3,解得2<m<4


(3)解:连接MC,作MG⊥y轴并延长交AC于点N,则点G坐标为(0,5)

∵MG=1,GC=5﹣4=1

∴MC= =

把y=5代入y=﹣x+4解得x=﹣1,则点N坐标为(﹣1,5),

∵NG=GC,GM=GC,

∴∠NCG=∠GCM=45°,

∴∠NCM=90°,

由此可知,若点P在AC上,则∠MCP=90°,则点D与点C必为相似三角形对应点

①若有△PCM∽△BDC,则有

∵BD=1,CD=3,

∴CP= = =

∵CD=DA=3,

∴∠DCA=45°,

若点P在y轴右侧,作PH⊥y轴,

∵∠PCH=45°,CP=

∴PH= =

把x= 代入y=﹣x+4,解得y=

∴P1 );

同理可得,若点P在y轴左侧,则把x=﹣ 代入y=﹣x+4,解得y=

∴P2 );

②若有△PCM∽△CDB,则有

∴CP= =3

∴PH=3 ÷ =3,

若点P在y轴右侧,把x=3代入y=﹣x+4,解得y=1;

若点P在y轴左侧,把x=﹣3代入y=﹣x+4,解得y=7

∴P3(3,1);P4(﹣3,7).

∴所有符合题意得点P坐标有4个,分别为P1 ),P2 ),P3(3,1),P4(﹣3,7).


【解析】(1)将点A、点C的坐标代入函数解析式,即可求出b、c的值,通过配方法得到点M的坐标;(2)点M是沿着对称轴直线x=1向下平移的,可先求出直线AC的解析式,将x=1代入求出点M在向下平移时与AC、AB相交时y的值,即可得到m的取值范围;(3)由题意分析可得∠MCP=90°,则若△PCM与△BCD相似,则要进行分类讨论,分成△PCM∽△BDC或△PCM∽△CDB两种,然后利用边的对应比值求出点坐标.
【考点精析】解答此题的关键在于理解相似三角形的性质的相关知识,掌握对应角相等,对应边成比例的两个三角形叫做相似三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解下列方程:
(1)5x2+2x﹣1=0
(2)(x﹣2)2=2x﹣4.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1按如图方式排列.若规定(mn)表示第m排从左向右第n个数,则(73)所表示的数是__;(52)与(2017)表示的两数之积是__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为C点的坐标为,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着的路线移动即:沿着长方形移动一周

写出点B的坐标______

当点P移动了4秒时,描出此时P点的位置,并求出点P的坐标.

在移动过程中,当点Px轴距离为5个单位长度时,求点P移动的时间.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】最近,“校园安全”受到全社会的广泛关注,重庆八中对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)扇形统计图中“基本了解”部分所对应扇形的圆心角为度;请补全条形统计图
(2)若达到“了解”程度的人中有1名男生2名女生,达到“不了解”的程度的人中有1名男生和1名女生,若分别从达到“了解”程度和“不了解”的人中分别抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)观察推理:如图 1,△ABC 中,∠ACB=90°,AC=BC,直线 L 过点C,点 A,B 在直线 L 同侧,BD⊥L, AE⊥L,垂足分别为D,E

求证:△AEC≌△CDB

(2)类比探究:如图 2,RtABC 中,∠ACB=90°,AC=4,将斜边 AB 绕点 A 逆时针旋转 90° AB’, 连接B’C,求AB’C 的面积

(3)拓展提升:如图 3,等边EBC ,EC=BC=3cm,点 O BC 上且 OC=2cm,动点 P 从点 E 沿射线EC 1cm/s 速度运动,连接 OP,将线段 OP 绕点O 逆时针旋转 120°得到线段 OF,设点 P 运动的时间为t 秒。

t= 时,OF∥ED

若要使点F 恰好落在射线EB 上,求点P 运动的时间t

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=1,AD= ,AF平分∠DAB,过C点作CE⊥BD于E,延长AF、EC交于点H,下列结论中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED,正确的个数是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点PAOB的边OB上的一点,过点POB的垂线,交OA于点C

(1) 过点COB的平行线CD

(2) 过点POA的垂线,垂足为H

(3) 线段PH的长度是点P 的距离,线段 的长度是点C到直线OB的距离.线段PCPHOC这三条线段大小关系是 (用“<”号连接).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,它表示甲乙两人从同一个地点出发后的情况.到十点时,甲大约走了13千米.根据图象回答:

1)甲是几点钟出发?

2)乙是几点钟出发,到十点时,他大约走了多少千米?

3)到十点为止,哪个人的速度快?

4)两人最终在几点钟相遇?

5)你能将图象中得到信息,编个故事吗?

查看答案和解析>>

同步练习册答案