分析 (1)由平行四边形的性质得出AD∥BC,AD=BC,证明四边形FBED是平行四边形,得出BF∥ED,同理:四边形AECF是平行四边形,得出AE∥FC,即可得出结论;
(2)由平行四边形的性质得出∠BAD=120°,证明△ABE是等边三角形,得出BE=DF=AB=2,证出AB=AF,得出∠ABG=∠AFG=30°,证出∠EGF=90°,即可得出四边形GEHF是矩形.
解答 (1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴BE∥DF,
∵BE=DF,
∴四边形FBED是平行四边形,
∴BF∥ED,即GF∥EH,
同理:四边形AECF是平行四边形,
∴AE∥FC,
即GE∥FH,
∴四边形GEHF是平行四边形;
(2)解:当AE平分∠BAD,CF平分∠BCD时,BE=DF=2,四边形GEHF是矩形;理由如下:
∵四边形ABCD是平行四边形,
∴∠BAD=180°-∠ABC=180°-60°=120°,
∴∠ABC=∠BAC=∠AEB=60°,
∴△ABE是等边三角形,
∴BE=DF=AB=2,
∴AF=CE=BC-BE=4-2=2,
∴AB=AF,
∴∠ABG=∠AFG=30°,
∴∠AGB=90°,
∴∠EGF=90°,
∴四边形GEHF是矩形;
即当x=2时,四边形GEHF是矩形.
点评 本题考查了平行四边形的判定与性质、等边三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 成绩x(分) | 频数(人) |
| 50≤x<60 | 10 |
| 60≤x<70 | 20 |
| 70≤x<80 | 60 |
| 80≤x<90 | 60 |
| 90≤x<100 | 50 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 如果a2>0,那么a>0 | B. | 如果m是自然数,那么m是整数 | ||
| C. | 矩形的对角线互相垂直平分 | D. | 菱形的对角线相等 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com