【题目】如图,平行四边形中,是的延长线上一点,与交于点,。
(1)求证:;
(2)若的面积为4,求平行四边形的面积。
【答案】(1)见解析;(2)48
【解析】
(1)根据平行四边形的对角相等,再根据AB∥CD,可得一对内错角相等,然后利用两组对应角相等即可证明△ABF∽△CEB;
(2)先证明△DEF∽△CEB,根据两三角形的相似比,求出△EBC的面积,也就求出了四边形BCDF的面积,再根据△DEF∽△ABF,求出△AFB的面积,由此可求出平行四边形ABCD的面积.
(1)证明:∵四边形ABCD是平行四边形,
∴∠A=∠C,AB∥CD,
∴∠ABF=∠CEB,
∴△ABF∽△CEB;
(2)∵四边形ABCD是平行四边形,
∴AD∥BC,AB平行且等于CD,
∴△DEF∽△CEB,△DEF∽△ABF,
∵CD=2DE,
∴,,
∵S△DEF=4,
∴S△CEB=36,S△ABF=16,
∴S四边形BCDF=S△BCES△DEF=32,
∴S四边形ABCD=S四边形BCDF+S△ABF=32+16=48.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.
(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.
(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.
(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b<0;②abc>0;③4a2b+c>0;④a+c>0,其中正确结论的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,对于二次函数,下列说法:①的最小值为1;②图象顶点坐标为,对称轴为直线;③当时,的值随值的增大而增大,当时,的值随值的增大而减小;④它的图象可以由的图象向右平移2个单位长度,再向上平移1个单位长度得到。其中错误的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过,两点,与轴交于点.
(1)求抛物线的解析式;
(2)若点在第一象限的抛物线上,且点的横坐标为,设的面积为,求与的函数关系式,并求的最大值;
(3)在轴上是否存在点,使以点,,为顶点的三角形为等腰三角形?如果存在,直接写出点坐标;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知四边形ABCD为菱形,点E、F、G、H分别为各边中点,判断E、F、G、H四点是否在同一个圆上,如果在同一圆上,找到圆心,并证明四点共圆;如果不在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com