精英家教网 > 初中数学 > 题目详情
17.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=6cm,BC=8cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为3cm.

分析 在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=6,DE=DC,∠AED=∠C=90°,所以BE=AB-AE=4,设CD=x,则BD=8-x,然后在Rt△BDE中利用勾股定理得到42+x2=(8-x)2,再解方程求出x即可.

解答 解:在Rt△ABC中,∵AC=6,BC=8,
∴AB=$\sqrt{{6}^{2}+{8}^{2}}$=10,
∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,
∴AE=AC=6,DE=DC,∠AED=∠C=90°,
∴BE=AB-AE=10-6=4,
设CD=x,则BD=8-x,
在Rt△BDE中,∵BE2+DE2=BD2
∴42+x2=(8-x)2,解得x=3,
即CD的长为3cm.
故答案为:3.

点评 本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.
(1)求抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,P是正方形ABCD内一点,将△ABP绕点B顺时针方向旋转能与△CBP′重合,若BP=3,求PP′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,点M是直线y=2x+3上的动点,过点M作MH⊥x轴于点N,y轴上是否存在点P,使△MNP为等腰直角三角形?小明发现:当动点M运动到(-1,1)时,y轴上存在点P(0,1),此时有MN=MP,△MNP为等腰直角三角形,请你写出y轴上其它M在x轴上方点P的坐标(0,0),(0,$\frac{3}{4}$),(0,1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知一次函数y=kx+b的图象与反比例函数y=$\frac{m}{x}$的图象交于点A(-3,1),B(2,n)两点,
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,有一个直角△ABC,∠C=90°,AC=6cm,BC=8cm,将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,则CD=3cm.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为$\frac{5}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.关于三角形内角的叙述错误的是(  )
A.三角形三个内角的和是180°
B.三角形两个内角的和一定大于60°
C.三角形中至少有一个角不小于60°
D.一个三角形中最大的角所对的边最长

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.填空:
(1)x2-18x+81=(x-9)2
(2)x2+x+$\frac{1}{4}$=(x+$\frac{1}{2}$)2

查看答案和解析>>

同步练习册答案