精英家教网 > 初中数学 > 题目详情

【题目】已知:mn是方程x2﹣6x+5=0的两个实数根,且mn,抛物线y=﹣x2+bx+c的图象经过点Am,0),B(0,n).

(1)求这个抛物线的解析式;

(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点CD的坐标和△BCD的面积.

【答案】(1)y=﹣x2﹣4x+5;(2)15.

【解析】

(1)首先解方程求得mn的值,得到AB的坐标,然后利用待定系数法即可求得解析式;

(2)首先求得CD的坐标,作DEy轴于点E,根据SBCDS梯形OCDESDEBSOBC求解.

解:(1)解方程x2﹣6x+5=0,

解得:x1=1,x2=5,

m=1,n=5.

A的坐标是(1,0),B的坐标是(0,5).

代入二次函数解析式得:

解得:

则函数的解析式是y=﹣x2﹣4x+5;

(2)解方程﹣x2﹣4x+5=0,

解得:x1=﹣5,x2=1.

C的坐标是(﹣5,0).

y=﹣x2﹣4x+5=﹣(x2+4x+4)+9=﹣(x+2)2+9

D的坐标是(﹣2,9).

DEy轴于点E,则E坐标是(0,9).

S梯形OCDEOC+DEOE×(2+5)×9=

SDEBBEDE×4×2=4,

SOBCOCOB×5×5=

SBCDS梯形OCDESDEBSOBC﹣4﹣=15.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.

根据以上情况,请你回答下列问题:

(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?

(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知直线l:y=kx和抛物线C:y=ax2+bx+1.

1k=1,b=1时,抛物线C:y=ax2+bx+1的顶点在直线l:y=kx上,求a的值;

2若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点;

(i)求此抛物线的解析式;

(ii)P是此抛物线上任一点,过点PPQy轴且与直线y=2交于点Q,O为原点,

求证:OP=PQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表8.

请根据图表中的信息,解答下列问题:

(1)表中的a=______,b=______,中位数落在________组,将频数分布直方图补全;

(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?

(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出2人向全校同学作读书心得报告,请用画树状图或列表法求抽取的2名学生刚好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,D是边AB上一点,且∠A=2∠DCB.EBC边上的一点,以EC为直径的⊙O经过点D.

(1)求证:AB⊙O的切线;

(2)若CD的弦心距为1,BE=EO,求BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰RtABC中,,点P在以斜边AB为直径的半圆上,MPC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是(

A. B. 2 C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDABC外接圆⊙O的直径,且∠BAE=C.

(1)求证:AE与⊙O相切于点A;

(2)若AEBC,BC=2,AC=2,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点AC分别在xy轴的正半轴上,点D为对角线OB的中点,反比例函数)在第一象限内的图象经过点D,且与ABBC分别交于EF两点,若四边形BEDF的面积为4.5,则的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是(

A.①③④ B.①②⑤ C.③④⑤ D.①③⑤

查看答案和解析>>

同步练习册答案