精英家教网 > 初中数学 > 题目详情

【题目】小聪对函数的图象和性质进行了探究.已知当自变量的值为04时,函数值都为-3,当自变量的值为-15时,函数值为2

探究过程如下,请补充完整.

1)这个函数的表达式为

2)在给出的平面直角坐标系中,画出这个函数的图象并写出这个函数的一条性质: ;

3)进一步探究函数图象并解决问题:

①直线与函数4个解,则k的取值范围为

②已知函数的图象如图所示,结合你所画的函数图象,写出不等式的解集:

【答案】1;(2)函数图象关于直线对称;(3)①;②

【解析】

1)根据题意将四个点代入函数表达式用待定系数法求参数即可.

2)用描点法画出函数图象,观察图象,阐述其一条性质即可,如对称性,增减性.

3)①直线平行于轴,作出这条直线并上下平移,即可找到符合要求的的取值范围;②根据图象,找到相同值分别对应的的值与值中一次函数较大或者相等的部分.

解:(1)根据题意将代入得,

解得.

故该函数表达式为

2)函数图象关于直线对称;(从数学角度叙述有理就行)

3)①直线与函数4个解,则两函数图象有4个交点,观察图象可得

②不等式的解集表示函数的值小于或者等于的值所对应的的取值部分,观察图象可得,

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0)

(1)求抛物线的解析式和对称轴;

(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;

(3)该抛物线有一点Dxy),使得SABCSDBC,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线轴于点,交轴于点,点是射线上一动点(点不与点重合),过点垂直于轴,交直线于点,以直线为对称轴,将翻折,点的对称点落在轴上,以为邻边作平行四边形.设点重叠部分的面积为

1的长是__________的长是___________(用含的式子表示);

2)求关于的函数关系式,并写出自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD中,对角线ACBD交于O点,DE∥ACCE∥BD

1)求证:四边形OCED为矩形;

2)在BC上截取CFCO,连接OF,若AC16BD12,求四边形OFCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知中,D是线段AC上一点(不与A,C重合),连接BD,将沿AB翻折,使点D落在点E处,延长BDEA的延长线交于点F,若是直角三角形,则AF的长为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一款优雅且稳定的抛物线型落地灯,防滑螺母C为抛物线支架的最高点,灯罩D距离地面1.86米,点最高点C距灯柱的水平距离为1.6米,灯柱AB及支架的相关数据如图2所示.若茶几摆放在灯罩的正下方,则茶几到灯柱的距离AE__米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线x轴交于AB两点,与y轴交于C点,B点与C点是直线yx3x轴、y轴的交点.D为线段AB上一点.

1)求抛物线的解析式及A点坐标.

2)若点D在线段OB上,过D点作x轴的垂线与抛物线交于点E,求出点E到直线BC的距离的最大值.

3D为线段AB上一点,连接CD,作点B关于CD的对称点B,连接ABBD

当点B落坐标轴上时,求点D的坐标.

在点D的运动过程中,ABD的内角能否等于45°,若能,求此时点B的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知△ABC中,∠ABC45°,AB7BC17,以AC为斜边在△ABC外作等腰RtACD,连接BD,则BD的长为___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,O为坐标原点,的边垂直于轴,垂足为B,反比例函数的图象经过AO上的点C,且,与边AB相交于点D,

1)求点C的横坐标;

2)求反比例函数的解析式;

3)求经过CD两点的一次函数解析式.

查看答案和解析>>

同步练习册答案