【题目】如图,菱形中,分别是的中点,连接,则的周长为( )
A.B.C.D.
【答案】D
【解析】
首先根据菱形的性质证明△ABE≌△ADF,然后连接AC可推出△ABC以及△ACD为等边三角形.根据等边三角形三线合一的性质又可推出△AEF是等边三角形.根据勾股定理可求出AE的长,继而求出周长.
解:∵四边形ABCD是菱形,
∴AB=AD=BC=CD=2cm,∠B=∠D,
∵E、F分别是BC、CD的中点,
∴BE=DF,
在△ABE和△ADF中,,
∴△ABE≌△ADF(SAS),
∴AE=AF,∠BAE=∠DAF.
连接AC,
∵∠B=∠D=60°,
∴△ABC与△ACD是等边三角形,
∴AE⊥BC,AF⊥CD,
∴∠BAE=∠DAF=30°,
∴∠EAF=60°,BE=AB=1cm,
∴△AEF是等边三角形,AE=,
∴周长是.
故选:D.
科目:初中数学 来源: 题型:
【题目】已知二次函数y1=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.
(1)求m,n的值.
(2)如图,一次函数y2=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.
(3)直接写出y1>y2时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OA=OB,△OAB的面积是2.
(1)求线段OB的中点C的坐标.
(2)连结AC,过点O作OE⊥AC于E,交AB于点D.
①直接写出点E的坐标.
②连结CD,求证:∠ECO=∠DCB;
(3)点P为x轴上一动点,点Q为平面内一点,以点A.C.P.Q为顶点作菱形,直接写出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l:yx与直线l:y=kx+b相交于点A(a,3),直线交l交y轴于点B(0,﹣5).
(1)求直线l的解析式;
(2)将△OAB沿直线l翻折得到△CAB(其中点O的对应点为点C),求证:AC∥OB;
(3)在直线BC下方以BC为边作等腰直角三角形BCP,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象经过点(x1,0)、(2,0),且﹣2<x1<﹣1,与y轴正半轴的交点在(0,2)的下方,则下列结论:
①abc<0;②b2>4ac;③2a+b+1<0;④2a+c>0.
则其中正确结论的序号是
A. ①② B. ②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①abc>0;②2a﹣b<0;③4a﹣2b+c<0;④(a+c)2<b2其中正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC中,BO平分∠ABC,CO平分∠ACB
(1)如图1,∠BOC和∠A有怎样的数量关系?请说明理由
(2)如图2,过O点的直线分别交△ABC的边AB、AC于E、F(点E不与A,B重合,点F不与A、C重合),BP平分外角∠DBC,CP平分外角∠GCB,BP,CP相交于P.求证:∠P=∠BOE+∠COF;
(3)如果(2)中过O点的直线与AB交于E(点E不与A、B重合),与CA的延长线交于F在其它条件不变的情况下,请直接写出∠P、∠BOE、∠COF三个角之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):
(1)报名参加课外活动小组的学生共有 人,将条形图补充完整;
(2)扇形图中m= ,n= ;
(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com