精英家教网 > 初中数学 > 题目详情

【题目】一个不透明的袋子中装有分别标注着汉字“海、“棠”、“园”的三个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.

1)若从中任取一球,球上的汉字恰好是“园”的概率是

2)若从袋中任取一球,记下汉字后放回袋中,然后再从中任取一球,再次记下球上的汉字,求两次的汉字恰好组成海棠这个词的概率.

【答案】(1);(2)

【解析】

1)直接由概率公式,即可得到答案;

2)首先根据题意列出表格,然后由表格求得所有等可能的结果与两次的汉字恰好组成“海棠”这个词的情况,再利用概率公式求解即可求得答案.

解:(1)抽到“园”字的概率为:

2)列表

(海,海)

(棠,海)

(园,海)

(海,棠)

(棠,棠)

(园,棠)

(海,园)

(棠,园)

(园,园)

共有9种等可能情况,其中两次的汉字恰好组成海棠这个词有2种,

∴其概率为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,将两个完全相同的三角形纸片ABCDEC重合放置,其中C=900B=E=300.

1)操作发现如图2,固定ABC,使DEC绕点C旋转。当点D恰好落在BC边上时,填空:线段DEAC的位置关系是

BDC的面积为S1AEC的面积为S2。则S1S2的数量关系是

2)猜想论证

DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1S2的数量关系仍然成立,并尝试分别作出了BDCAECBCCE边上的高,请你证明小明的猜想。

3)拓展探究

已知ABC=600D是其角平分线上一点,BD=CD=4OEABBC于点E(如图4),若在射线BA上存在点F,使SDCF =SBDC,直接写出相应的BF的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的直径,

(1)求证:的切线;

(2)若点的中点,连接于点,当时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数图象如图,下列正确的个数为  

有两个解,当时,时,增大而减小.

A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】农经公司以30/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:

销售价格x(元/千克)

30

35

40

45

50

日销售量p(千克)

600

450

300

150

0

(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定px之间的函数表达式;

(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?

(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+bx+cx轴交于A-10),B两点,与y轴交于点C03),点P是抛物线在第一象限上的一点,过点PPHx轴,垂足为H,交线段BC于点Q

1)求抛物线对应的函数表达式;

2)当PQ=2QH时,求点P的坐标;

3)当PH最大时,连接APAPBC交于点D,点F是第一象限内一点,且∠AFC=45°,点G在抛物线上,直线FGFC分别与直线PH交于点MN.当三角形ABD相似三角形FMN时,求点G的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O过ABCD的三顶点A、D、C,边AB与O相切于点A,边BC与O相交于点H,射线AD交边CD于点E,交O于点F,点P在射线AO上,且PCD=2DAF.

(1)求证:ABH是等腰三角形;

(2)求证:直线PC是O的切线;

(3)若AB=2,AD=,求O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,边上的中线,点为线段上一点(不与点、点重合),连接,作的延长线交于点,与交于点,连接

1)求证:

2)求的度数;

3)求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实验室里,水平桌面上有甲、乙、丙三个高都为10cm圆柱形容器(甲、丙的底面积相同),用两个相同的管子在容器的6cm高度处连通(即管子底离容器底6cm,管子的体积忽略不计).现三个容器中,只有甲中有水,水位高2cm,如图①所示.若每分钟同时向乙、丙容器中注入相同量的水,到三个容器都注满水停止,乙、丙容器中的水位hcm)与注水时间tmin)的图象如图②所示.若乙比甲的水位高2cm时,注水时间m分钟,则m的值为(  )

A.35B.46C.3D.59

查看答案和解析>>

同步练习册答案