【题目】抛物线y=x2﹣2x﹣3与交y轴负半轴于C点,直线y=kx+2交抛物线于E、F两点(E点在F点左边).使△CEF被y轴分成的两部分面积差为5,则k的值为_____.
【答案】﹣4
【解析】
设直线y=kx+2交抛物线于E、F两点的横坐标分别为x1,x2,且(x1<0,x2>0),根据题意得出x1+x2=2+k,然后根据△CEF被y轴分成的两部分面积差为5,列出关于k的方程,解方程即可.
设直线y=kx+2交抛物线于E、F两点的横坐标分别为x1,x2,且(x1<0,x2>0),
由题意可知:x1,x2是方程x2-2x-3=kx+2的两个根,
整理方程为:x2-(2+k)x-5=0,
∴x1+x2=2+k,
由抛物线y=x2-2x-3可知C(0,-3),
设直线y=kx+2交y轴于B,
∴B(0,2),
∴BC=5,
∵△CEF被y轴分成的两部分面积差为5,
∴|S△BCE-S△BCF|=5,
当S△BCE-S△BCF=5时,则有×5x2-×5(-x1)=5,
整理得:
(x1+x2)=5,
∴(2+k)=5,解得k=0(舍去),
当S△BCE-S△BCF=-5时,则有×5x2-×5(-x1)=-5,
整理得:(x1+x2)=-5,
∴(2+k)=-5,解得k=-4,
故答案是:-4.
科目:初中数学 来源: 题型:
【题目】下列说法:事件发生的概率可以是任意正数;不确定事件的概率大于而小于;不确定事件发生的概率是不确定的;事件发生的概率可以等于事件不发生的概率,其中正确的( )
A. 个 B. 个 C. 个 D. 个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,是自动喷灌设备的水管,点在地面,点高出地面米.在处有一自动旋转的喷水头,在每一瞬间,喷出的水流呈抛物线状,喷头与水流最高点的连线与水平线成角,水流的最高点与喷头高出米,在如图的坐标系中,水流的落地点到点的距离是________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某小麦改良品种后平均每公顷增加产量a吨,原来产m吨小麦的一块土地,现在小麦的总产量增加了20吨.
(1)当a=0.8,m=100时,原来和现在小麦的平均每公顷产量各是多少?
(2)请直接接写出原来小麦的平均每公顷产量是 吨,现在小麦的平均每公顷产量是 吨;(用含a、m的式于表示)
(3)在这块土地上,小麦的改良品种成熟后,甲组收割完需n小时,乙组比甲组少用0.5小时就能收割完,求两组一起收割完这块麦田需要多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm,点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则△PAQ的最大面积是( )
A. 8cm2 B. 9cm2 C. 16cm2 D. 18cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是由边长为的若干个小正方形拼成的方格图,的顶点,,均在小正方形的顶点上.
(1)在图中建立恰当的平面直角坐标系,且使点的坐标为,并写出,两点的坐标;
(2)在(1)中建立的平面直角坐标系内画出关于轴对称的;
(3)求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某同学报名参加学校秋季运动会,有以下 5 个项目可供选择:径赛项目:100m、200m、1000m(分别用 A1、A2、A3 表示);田赛项目:跳远,跳高(分别用 T1、T2 表示).
(1)该同学从 5 个项目中任选一个,恰好是田赛项目的概率 P 为 ;
(2)该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率 P1,利用列表法或树状图加以说明;
(3)该同学从 5 个项目中任选两个,则两个项目都是径赛项目的概率 P2 为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com