精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中:A(11)B(11)C(1,-2)D(1,-2),现把一条长为2 018个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A→B→C→D→A→…的规律紧绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是________

【答案】(1,﹣1).

【解析】

先求出四边形ABCD的周长为10,得到2018÷10的余数为8,由此即可解决问题.

A(1,1),B(1,1),C(1,2),D(1,2),

∴四边形ABCD的周长为10,

2018÷10的余数为8,

又∵AB+BC+CD=7,

∴细线另一端所在位置的点在D处上面1个单位的位置,坐标为(1,1).

故答案为:(1,1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(感知)如图①,ABCD,点E在直线ABCD之间,连结AE、BE,试说明∠BEE+DCE=AEC.下面给出了这道题的解题过程,请完成下面的解题过程,并填空(理由或数学式):

解:如图①,过点EEFAB

∴∠BAE=1(   

ABCD(   

CDEF(   

∴∠2=DCE

∴∠BAE+DCE=1+2(   

∴∠BAE+DCE=AEC

(探究)当点E在如图②的位置时,其他条件不变,试说明∠AEC+FGC+DCE=360°;

(应用)点E、F、G在直线ABCD之间,连结AE、EF、FGCG,其他条件不变,如图③.若∠EFG=36°,则∠BAE+AEF+FGC+DCG=   °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数的图象经过点(-3,-2).

(1)求这个函数表达式;

(2)判断(-5,3)是否在这个函数的图象上

(3)M在直线y=kx+4上且到y轴的距离是3,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国古代有二十四节气歌,“春雨惊春清谷天,夏满芒夏暑相连.秋处露秋寒霜降,冬雪雪冬小大寒.”它是为便于记忆我国古时历法中二十四节气而编成的小诗歌,流传至今.节气指二十四时节和气候,是中国古代订立的一种用来指导农事的补充历法,是中国古代劳动人民长期经验的积累和智慧的结晶.其中第一个字“春”是指立春,为春季的开始,但在气象学上的入春日是有严格定义的,即连续5天的日平均气温稳定超过10℃又低于22℃,才算是进入春天,其中,5天中的第一天即为入春日.例如:2014年3月13日至18日,北京的日平均气温分别为9.3℃,11.7℃,12.7℃,11.7℃,12.7℃和12.3℃,即从3月14日开始,北京日平均气温已连续5天稳定超过10℃,达到了气象学意义上的入春标准.因此可以说2014年3月14日为北京的入春日. 日平均温度是指一天24小时的平均温度.气象学上通常用一天中的2时、8时、14时、20时4个时刻的气温的平均值作为这一天的日平均气温(即4个气温相加除以4),结果保留一位小数.
如表是北京顺义2017年3月28日至4月3日的气温记录及日平均气温(单位:℃)

时间

2时

8时

14时

20时

平均气温

3月28日

6

8

13

11

9.5

3月29日

7

6

17

14

a

3月30日

7

9

15

12

10.8

3月31日

8

10

19

13

12.5

4月1日

8

7

18

15

12

4月2日

11

7

22

16

14

4月3日

13

11

21

17

15.5

根据以上材料解答下列问题:
(1)求出3月29日的日平均气温a;
(2)采用适当的统计图将这7天的日平均气温的变化情况表示出来;
(3)请指出2017年的哪一天是北京顺义在气象学意义上的入春日.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某电视塔周围的建筑群平面示意图,这个电视塔的位置用A表示.某人由点B出发到电视塔,他的路径表示错误的是(注:街在前,巷在后)( )

A. (2,2)→(2,5)→(5,6) B. (2,2)→(2,5)→(6,5)

C. (2,2)→(6,2)→(6,5) D. (2,2)→(2,3)→(6,3)→(6,5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数y= 的图象经过A,B两点,则菱形ABCD的面积为(
A.2
B.4
C.2
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。

[来

根据以上信息,解答下列问题:

(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出关于的函数表达式;

(2)请你帮助小明计算并选择哪个出游方案合算。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB交双曲线 于A,B两点,交x轴于点C,且BC= AB,过点B作BM⊥x轴于点M,连结OA,若OM=3MC,SOAC=8,则k的值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,对角线ACBD交于点OABAC,点EBD上一点,且AEAD,∠EAD=∠BAC

⑴ 求证:∠ABD=∠ACD

⑵ 若∠ACB=65°,求∠BDC的度数.

查看答案和解析>>

同步练习册答案