精英家教网 > 初中数学 > 题目详情

【题目】小明和爸爸周末到湿地公园进行锻炼,两人同时从家出发,匀速骑共享单车到达公园入口,然后一同匀速步行到达驿站,到达驿站后小明的爸爸立即又骑共享单车按照来时骑行速度原路返回,在公园入口处改为步行,并按来时步行速度原路回家,小明到达驿站后逗留了10分钟之后骑车回家,爸爸在锻炼过程中离出发地的路程与出发的时间的函数关系如图.

(1)图中m_____n_____(直接写出结果)

(2)小明若要在爸爸到家之前赶上,问小明回家骑行速度至少是多少?

【答案】(1)2545(2)小明回家骑行速度至少是0.3千米/分.

【解析】

(1)根据函数图象,先求出爸爸骑共享单车的速度以及匀速步行的速度,再求出返回途中爸爸从驿站到公园入口的时间,得到m的值;然后求出爸爸从公园入口到家的时间,进而得到n的值;

(2)根据小明要在爸爸到家之前赶上得到不等关系:(n﹣爸爸从驿站到家的时间﹣小明到达驿站后逗留的10分钟小明回家骑行的速度驿站与家的距离,依此列出不等式,求解即可.

(1)由题意,可得爸爸骑共享单车的速度为:0.2(千米/)

爸爸匀速步行的速度为:0.1(千米/)

返回途中爸爸从驿站到公园入口的时间为:5(分钟)

所以m20+525

爸爸从公园入口到家的时间为:20(分钟)

所以n25+2045

故答案为2545

(2)设小明回家骑行速度是x千米/分,

根据题意,得(452510)x≥3

解得x≥0.3

答:小明回家骑行速度至少是0.3千米/分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,ABC是边长3cm的等边三角形.动点P1cm/s的速度从点A出发,沿线段AB向点B运动.

(1)如图1,设点P的运动时间为ts),那么t   s)时,PBC是直角三角形;

(2)如图2,若另一动点Q从点B出发,沿线段BC向点C运动,如果动点PQ都以1cm/s的速度同时出发.设运动时间为ts),那么t为何值时,PBQ是直角三角形?

(3)如图3,若另一动点Q从点C出发,沿射线BC方向运动.连接PQACD.如果动点PQ都以1cm/s的速度同时出发.设运动时间为ts),那么t为何值时,DCQ是等腰三角形?

(4)如图4,若另一动点Q从点C出发,沿射线BC方向运动.连接PQACD,连接PC.如果动点PQ都以1cm/s的速度同时出发.请你猜想:在点PQ的运动过程中,PCDQCD的面积有什么关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知 a b a b 两个数在数轴上对应的点分别为点 A 、点 B ,求 A B 两点之间的距离.

(探索)

小明利用绝对值的概念,结合数轴,进行探索:

1)补全小明的探索

(应用)

2)若点C 对应的数c ,数轴上点C AB 两点的距离相等,求c .(用含ab 的代数式表示)

3)若点 D对应的数 d ,数轴上点 D A 的距离是点 D B 的距离的nn 0 倍,请探索 n 的取值范围与点 D 个数的关系,并直接写出ab dn 的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.

(1)求每台A型电脑和B型电脑的销售利润;

(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.

①求y关于x的函数关系式;

②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?

(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,等边三角形ABC中,DE分别是BCAC上的点,且AE=CD

1)求证:AD=BE

2)求:∠BFD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,对角线ACAB、AD的夹角分别为α、β,点EAC上任意一点,给出如下结论:①AB sinα=AD sinβ;SABE=SADEADsinα=AB sinβ. 其中正确的个数有(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】类比学习:一动点沿着数轴向右平移3个单位,再向左平移个单位,相当于向右平移1个单位.用实数加法表示为

若坐标平面上的点作如下平移:沿轴方向平移的数量为(向右为正,向左为负,平移个单位),沿轴方向平移的数量为(向上为正,向下为负,平移个单位),则把有序数对{}叫做这一平移的“平移量”;“平移量”{}与“平移量”{}的加法运算法则为

解决问题:(1)计算:{31}+{12}{12}+{31}

2动点P从坐标原点O出发,先按照“平移量”{31}平移到A,再按照“平移量”{12}平移到B;若先把动点P按照“平移量”{12}平移到C,再按照“平移量”{31}平移,最后的位置还是点B吗?在图中画出四边形OABC.

证明四边形OABC是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】10袋小麦称重后记录如下(单位:kg).88.89191.58991.291.388.991.29191.1

(1)如果每袋小麦以90 kg为标准,超过的千克数记作正数,不足的千克数记作负数,这10袋小麦总计超过多少千克或不足多少千克?

(2)10袋小麦一共多少千克?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】52324日,兰州市九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是012,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为41715.结合统计图回答下列问题:

(1)这次共抽取了多少名学生的一分钟跳绳测试成绩?

(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?

(3)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?

查看答案和解析>>

同步练习册答案