【题目】如图,□ABCD中,对角线AC与AB、AD的夹角分别为α、β,点E是AC上任意一点,给出如下结论:①AB sinα=AD sinβ;②S△ABE=S△ADE;③ADsinα=AB sinβ. 其中正确的个数有( )
A. 0个 B. 1个 C. 2个 D. 3个
【答案】C
【解析】分析:
如下图,(1)过点D作DN⊥AC于点N,过点B作BM⊥AC于点M,由此可得DN=AD·sinβ,BM=AB·sinα,由已知条件易证△ABC≌△CDA,从而可得S△ABC=ACAB·sinα=ACAD·sinβ,由此可得AB· sinα=AD· sinβ,即结论①成立;(2)由S△ABE=AEABsinα,S△ADE=AEAdsinβ结合(1)中所得AB·sinα=AD·sinβ即可得到S△ABE=S△ADE,故结论②成立;(3)由已知条件易证△ADN≌△CBM,由此可得DN=BM,即AD·sinβ=AB·sinα,AD·sinα=AB·,由此可知只有当=时,才有ADsinα=ABsinβ成立,故结论③不一定成立;
详解:
由题意,可知∠CAB=α,∠DAC=β,如下图,过点D作DN⊥AC于点N,过点B作BM⊥AC于点M,
∴DN=AD·sinβ,BM=AB·sinα,
(1)∵四边形ABCD是平行四边形,
∴AD=BC,AB=CD.
在△ABC与△CDA中, ,
∴△ABC≌△CDA,
∴S△ABC=S△CDA,
∵S△ABC=ACABsinα,S△CDA=ACADsinβ,
∴AB·sinα=AD·sinβ,①正确;
(2)∵S△ABE=AEABsinα,S△ADE=AEADsinβ,且AB·sinα=AD·sinβ,
∴S△ABE=S△ADE,②正确;
(3)∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠DAN=∠BCM,
又∵∠DNA=∠BMC=90°,
∴△ADN≌△CBM,
∴DN=BM,
∴AD·sinβ=AB·sinα,
∴AD·sinα=AB·,
由此可知只有当=时,才有ADsinα=AB sinβ成立,故结论③不一定成立;
综上所述,3个结论中,只有①②成立.
故选C.
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):
(1)填写下表:
正方形ABCD内点的个数 | 1 | 2 | 3 | 4 | … | n |
分割成的三角形的个数 | 4 | 6 | … |
(2)原正方形能否被分割成2008个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的中线BD,CE交于点O,F,G分别是BO,CO的中点.
(1)填空:四边形DEFG是 四边形.
(2)若四边形DEFG是矩形,求证:AB=AC.
(3)若四边形DEFG是边长为2的正方形,试求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.
(1)问题发现
①当θ=0°时,= ;
②当θ=180°时,= .
(2)拓展探究
试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;
(3)问题解决
①在旋转过程中,BE的最大值为 ;
②当△ADE旋转至B、D、E三点共线时,线段CD的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和爸爸周末到湿地公园进行锻炼,两人同时从家出发,匀速骑共享单车到达公园入口,然后一同匀速步行到达驿站,到达驿站后小明的爸爸立即又骑共享单车按照来时骑行速度原路返回,在公园入口处改为步行,并按来时步行速度原路回家,小明到达驿站后逗留了10分钟之后骑车回家,爸爸在锻炼过程中离出发地的路程与出发的时间的函数关系如图.
(1)图中m=_____,n=_____;(直接写出结果)
(2)小明若要在爸爸到家之前赶上,问小明回家骑行速度至少是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(-3,2).
(1)直接写出点E的坐标 ;D的坐标
(3)点P是线段CE上一动点,设∠CBP=x°,∠PAD=y°,∠BPA=z°,确定x, y,z之间的数量关系,并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为某班35名学生投篮成绩的条形图,其中上面部分数据破损导致数据不完全,已知此班学生投篮成绩的中位数是5,下列选项正确的是_______.
①3球以下(含3球)的人数;②4球以下(含4球)的人数; ③5球以下(含5球)的人数;④6球以下(含6球)的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com