精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AB是⊙O的直径,F是⊙O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点EEDAF,交AF的延长线于点D

(1)求证:DE是⊙O的切线;

(2)若DE=3,CE=2

①求值;

②若点GAE上一点,求OG+EG最小值.

【答案】(1)证明见解析(2)① ②3

【解析】

1)作辅助线,连接OE.根据切线的判定定理,只需证DEOE即可;

2)①连接BE.根据BCDE两切线的性质证明△ADE∽△BEC;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以

②连接OF,交AD于H,由①得∠FOE=∠FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,故四边形AOEF是菱形,由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当F、G、M三点共线,OG+EG=GF+GM=FM最小,此时FM =3.故OG+EG最小值是3.

(1)连接OE

OA=OE,∴∠AEO=EAO

∵∠FAE=EAO,∴∠FAE=AEO

OEAF

DE⊥AF,∴OEDE

DE是⊙O的切线

(2)①解:连接BE

∵直径AB ∴∠AEB=90°

∵圆O与BC相切

∴∠ABC=90°

∵∠EAB+EBA=EBA+CBE=90°

∴∠EAB=CBE

∴∠DAE=CBE

∵∠ADE=BEC=90°

∴△ADE∽△BEC

②连接OF,交AD于H

由①,设BC=2x,则AE=3x

∵△BEC∽△ABC

解得:x1=2,(不合题意,舍去)

AE=3x=6,BC=2x=4,AC=AE+CE=8

AB=,∠BAC=30°

∴∠AEO=EAO=EAF=30°,∴∠FOE=2FAE=60°

∴∠FOE=FOA=60°,连接EF,则△AOF、△EOF都是等边三角形,∴四边形AOEF是菱形

由对称性可知GO=GF,过点G作GM⊥OE于M,则GM=EG,OG+EG=GF+GM,根据两点之间线段最短,当FGM三点共线,OG+EG=GF+GM=FM最小,此时FM=FOsin60o=3.

OG+EG最小值是3.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A10)、C(﹣23)两点,与y轴交于点N,其顶点为D

1)求抛物线及直线AC的函数关系式;

2)若P是抛物线上位于直线AC上方的一个动点,求APC的面积的最大值及此时点P的坐标;

3)在对称轴上是否存在一点M,使ANM的周长最小.若存在,请求出M点的坐标和ANM周长的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.

(1)求证:∠ACD=∠B;

(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;

①求tan∠CFE的值;

②若AC=3,BC=4,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(10),以O1为圆心,O1O为半径画半圆,交直线l于点P1,交x轴正半轴于点O2,由弦P1O2围成的弓形面积记为S1,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,由弦P2O3和围成的弓形面积记为S2,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4,由弦P3O4围成的弓形面积记为S3按此做法进行下去,其中S2018的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线yx与反比例函数yk0x0)的图象交于点Q4a),点Pmn)是反比例函数图象上一点,且n2m

1)求点 P坐标;

2)若点Mx轴上,使得△PMQ的面积为3,求M坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(问题解决)

一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?

小明通过观察、分析、思考,形成了如下思路:

思路一:将BPC绕点B逆时针旋转90°,得到BP′A,连接PP′,求出∠APB的度数;

思路二:将APB绕点B顺时针旋转90°,得到CP'B,连接PP′,求出∠APB的度数.

请参考小明的思路,任选一种写出完整的解答过程.

(类比探究)

如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义直线为抛物线bc为常数,梦想直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其梦想三角形”.

已知抛物线与其梦想直线交于AB两点A在点B的左侧,与x轴负半轴交于点C

填空:该抛物线的梦想直线的解析式为______,点A的坐标为______,点B的坐标为______;

如图,点M为线段CB上一动点,将AM所在直线为对称轴翻折,点C的对称点为N,若为该抛物线的梦想三角形,求点N的坐标;

当点E在抛物线的对称轴上运动时,在该抛物线的梦想直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是半圆O的直径,OCAB交半圆于点CD是射线OC上一点,连结AD交半圆O于点E,连结BECE

1)求证:EC平分∠BED

2)当EBED时,求证:AECE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数的图象与轴交于点-10),与轴的交点在0-2)和(0-1)之间(不包括这两点),对称轴为直线,下列结论不正确的是(

A.B.C.D.

查看答案和解析>>

同步练习册答案