【题目】如图1是一个长为
,宽为
的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).
![]()
(1)图2中的阴影部分的面积为 ;
(2)观察图2请你写出
,
,
之间的等量关系是 ;
(3)根据(2)中的结论,若
,
,则
;
(4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式
.在图形上把每一部分的面积标写清楚.
科目:初中数学 来源: 题型:
【题目】如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2 , 以AD2为一边,做第二个菱形AB2C2D2 , 使∠B2=60°;作AD3⊥B2C2于点D3 , 以AD3为一边做第三个菱形AB3C3D3 , 使∠B3=60°…依此类推,这样做的第n个菱形ABnCnDn的边ADn的长是 . ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料,解决下列问题:
材料一:对非负实数x“四舍五入”到个位的值记为
,即:当n为非负整数时,如果
,则
;反之,当n为非负整数时,如果
;则
,例如:
,
,
,![]()
材料二:平面直角坐标系中任意两点
,
,我们把
叫做
、
两点间的折线距离,并规定
若
是一定点,
是直线
上的一动点,我们把
的最小值叫做
到直线
的折线距离,例如:若
,
则
.
如果
,写出实数x的取值范围;
已知点
,点
,且
,求a的值.
若m为满足
的最大值,求点
到直线
的折线距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线y=﹣
x+8与x轴、y轴分别交于点A和点B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的函数解析式是( )
![]()
A. y=﹣
x+8 B. y=﹣
x+8 C. y=﹣
x+3 D. y=﹣
x+3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高
m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.![]()
(1)建立如图所示的平面直角坐标系,求抛物线的解析式并判断此球能否准确投中?
(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC,延长AD到E,使DE=AB.
(1)求证:∠ABC=∠EDC;
(2)求证:△ABC≌△EDC.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填空,完成下列说理过程
如图,点A,O,B在同一条直线上, OD,OE分别平分∠AOC和∠BOC.
![]()
(1)求∠DOE的度数;
(2)如果∠COD=65°,求∠AOE的度数.
解:(1)如图,因为OD是∠AOC的平分线,
所以∠COD =
∠AOC.
因为OE是∠BOC 的平分线,
所以 =
∠BOC.
所以∠DOE=∠COD+ =
(∠AOC+∠BOC)=
∠AOB= °.
(2)由(1)可知∠BOE=∠COE = -∠COD= °.
所以∠AOE= -∠BOE = °.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com