精英家教网 > 初中数学 > 题目详情

【题目】如图,菱形AB1C1D1的边长为1,∠B1=60°;作AD2⊥B1C1于点D2 , 以AD2为一边,做第二个菱形AB2C2D2 , 使∠B2=60°;作AD3⊥B2C2于点D3 , 以AD3为一边做第三个菱形AB3C3D3 , 使∠B3=60°…依此类推,这样做的第n个菱形ABnCnDn的边ADn的长是

【答案】
【解析】解:第1个菱形的边长是1,易得第2个菱形的边长是

第3个菱形的边长是( 2;…

每作一次,其边长为上一次边长的

故第n个菱形的边长是( n1

故答案为:( n1

本题要找出规律方能解答.第一个菱形边长为1,∠B1=60°,可求出AD2,即第二个菱形的边长…按照此规律解答即可第n个菱形ABnCnDn的边ADn的长.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,其对称轴为直线x=﹣1,给出下列结果:(1)b2>4ac;(2)abc>0;(3)2a+b=0;(4)a+b+c>0;(5)a﹣b+c<0.
则正确的结论是( )

A.(1)(2)(3)(4)
B.(2)(4)(5)
C.(2)(3)(4)
D.(1)(4)(5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,已知AD=10,CD=4,B′D=2.

(1)求证:B′E=BF;

(2)求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某庄有甲、乙两家草莓采摘园的草莓销售价格相同,春节期间,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为(千克),在甲园所需总费用为(元),在乙园所需总费用为(元),之间的函数关系如图所示.

1)甲采摘园的门票是_____,两个采摘园优惠前的草莓单价是每千克____

2)当时,求的函数表达式;

3)游客在“春节期间”采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB在数轴上分别表示ab

(1)对照数轴填写下表:

a

6

6

6

6

2

1.5

b

4

0

4

4

10

1.5

AB两点的距离

(2)AB两点间的距离记为d,试问:dab有何数量关系?

(3)在数轴上找出所有符合条件的整数点P,使它到5和-5的距离之和为10,并求所有这些整数的和;

(4)若点C表示的数为x,当点C在什么位置时,取得的值最小? 最小值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,∠BAC=120°,SABC=8,点MPN分别是边ABBCAC上任意一点,则:

1AB的长为____________

2PM+PN的最小值为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形ABC的直角边AB=6,BC=8,将直角三角形ABC沿边BC的方向平移到三角形DEF的位置,DEAC于点G,BE=2,三角形CEG的面积为13.5,下列结论:

①三角形ABC平移的距离是4; ②EG=4.5;

③AD∥CF; ④四边形ADFC的面积为6

其中正确的结论是( )

A. ①② B. ②③ C. ③④ D. ②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.

(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐;

(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1是一个长为 ,宽为 的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个回形正方形(如图2).

1)图2中的阴影部分的面积为

2)观察图2请你写出 之间的等量关系是

3)根据(2)中的结论,若 ,则

4)实际上我们可以用图形的面积表示许多恒等式,下面请你设计一个几何图形来表示恒等式.在图形上把每一部分的面积标写清楚.

查看答案和解析>>

同步练习册答案