精英家教网 > 初中数学 > 题目详情

【题目】如图,已知:∠A=∠F,∠C=∠D,求证:BD∥EC,下面是不完整的说明过程,请将过程及其依据补充完整.

证明:∵∠A=∠F(已知)
∴AC∥
∴∠D=∠1(
又∵∠C=∠D(已知)
∴∠1=
∴BD∥CE(

【答案】DF;内错角相等,两直线平行;两直线平行,内错角相等;∠C;等量代换、同位角相等;两直线平行
【解析】∵∠A=∠F(已知)
∴AC∥DF(内错角相等,两直线平行)
∴∠D=∠1(两直线平行,内错角相等)
又∵∠C=∠D(已知)
∴∠1=∠C(等量代换)
∴BD∥CE(同位角相等,两直线平行).
根据内错角相等,两直线平行得出AC∥DF ,根据两直线平行,内错角相等得出∠D=∠1 ,根据等量代换得出∠1=∠C ,根据同位角相等,两直线平行得出BD∥CE 。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在正方形 ABCD 中,点 P 在射线 AB 上,连结 PC,PD,M,N 分别为 AB,PC 中点,连结 MN 交 PD 于点 Q.

(1)如图 1,当点 P 与点 B 重合时,求∠QMB 的度数;

(2)当点 P 在线段 AB 的延长线上时.

①依题意补全图2

②小聪通过观察、实验、提出猜想:在点P运动过程中,始终有QP=QM.小聪把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:

想法1延长BA到点 E,使AE=PB .要证QP=QM,只需证△PDA≌△ECB.

想法2:取PD 中点E ,连结NE,EA. 要证QP=QM只需证四边形NEAM 是平行四边形.

想 法3:过N 作 NE∥CB 交PB 于点 E ,要证QP=QM ,只要证明△NEM∽△DAP.

……

请你参考上面的想法,帮助小聪证明QP=QM. (一种方法即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】因式分解:

(1)x3-16x; (2)2x2-12x+18.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+4x+k=0有两个相等的实根,则k的值为(  )
A.k=﹣4
B.k=4
C.k≥﹣4
D.k≥4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,兰兰站在河岸上的G点,看见河里有一只小船沿垂直于岸边的方向划过来,此时,测得小船C的俯角是FDC=30°,若兰兰的眼睛与地面的距离是15米,BG=1米,BG平行于AC所在的直线,迎水坡的坡度i=4:3,坡长AB=10米,求小船C到岸边的距离CA的长?(参考数据:=173,结果保留两位有效数字)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若 =25, =3,则a+b=( )
A.-8
B.±8
C.±2
D.±8或±2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂一周计划每日生产自行车100辆,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的车辆数记为正数,减少的车辆数记为负数):

星期

增减/辆

﹣1

+3

﹣2

+4

+7

﹣5

﹣10


(1)生产量最多的一天比生产量最少的一天多生产多少辆?
(2)本周总的生产量是多少辆?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOC=140°,OD平分∠AOC,OE平分∠BOC.

(1)求∠BOE的度数.
(2)求∠DOE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【发现证明】

如图1,点EF分别在正方形ABCD的边BCCD上,∠EAF=45°,试判断BEEFFD之间的数量关系.

小聪把ABE绕点A逆时针旋转90°ADG,通过证明AEF≌△AGF;从而发现并证明了EF=BE+FD

【类比引申】

1)如图2,点EF分别在正方形ABCD的边CBCD的延长线上,∠EAF=45°,连接EF,请根据小聪的发现给你的启示写出EFBEDF之间的数量关系,并证明;

【联想拓展】

2)如图3,如图,∠BAC=90°AB=AC,点EF在边BC上,且∠EAF=45°,若BE=3EF=5,求CF的长.

查看答案和解析>>

同步练习册答案