精英家教网 > 初中数学 > 题目详情

【题目】如图,Rt△OAB的顶点A(﹣4,8)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为

【答案】(2 ,4)
【解析】解:∵Rt△OAB的顶点A(﹣4,8)在抛物线y=ax2上,
∴8=16a,解得a=
∴抛物线为y= x2
∵点A(﹣4,8),
∴B(﹣4,0),
∴OB=4,
∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,
∴D点在y轴上,且OD=OB=4,
∴D(0,4),
∵DC⊥OD,
∴DC∥x轴,
∴P点的纵坐标为4,
代入y= x2 , 得4= x2
解得x=±2
∴P(2 ,4).
故答案为(2 ,4).
先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,4),且DC∥x轴,从而求得P的纵坐标为4,代入求得的解析式即可求得P的坐标.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).

(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法)
(2)求小明原来的速度。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2

(1)当P为线段AB的中点时,求d1+d2的值。
(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标。
(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.

(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD内接于⊙O,如图所示,在劣弧 上取一点E,连接DE、BE,过点D作DF∥BE交⊙O于点F,连接BF、AF,且AF与DE相交于点G,求证:

(1)四边形EBFD是矩形;
(2)DG=BE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=﹣1,下列结论:
①abc<0;②2a+b=0;③a﹣b+c>0;④4a﹣2b+c<0
其中正确的是(

A.①②
B.只有①
C.③④
D.①④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从长度分别为2、3、6、7、9的5条线段中任取3条作为三角形的边,能组成三角形的概率为( )
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案