精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,已知A(0,4)、B(2,0),在第一象限内的点C,使△ABC为等腰直角三角形,则点C的坐标为________.

(6,2)或(4,6)或(3,3)
分析:分别从当∠ABC=90°,AB=BC时,当∠BAC=90°,AB=AC时与当∠ACB=90°,AC=BC时去分析求解,利用全等三角形的判定与性质,即可求得点C的坐标.
解答:如图①,当∠ABC=90°,AB=BC时,
过点C作CD⊥x轴于点D,
∴∠CDB=∠AOB=90°,
∵∠OAB+∠ABO=90°,∠ABO+∠CBD=90°,
∴∠OAB=∠CBD,
在△AOB和△BDC中,

∴△AOB≌△BDC(AAS),
∴BD=OA=4,CD=OB=2,
∴OD=OB+BD=6,
∴点C的坐标为(6,2);
如图②,当∠BAC=90°,AB=AC时,
过点C作CD⊥y轴于点D,
同理可证得:△OAB≌△DCA,
∴AD=OB=2,CD=OA=4,
∴OA=OA+AD=6,
∴点C的坐标为(4,6);
如图③,当∠ACB=90°,AC=BC时,
过点C作CD⊥y轴于D,CE⊥x轴于E.
∵∠BCA=∠DCE=90°,
∴∠ACD=∠BCE,
在△ACD与△BCE中,

∴△ACD≌△BCE(AAS),
∴CD=CE=OE,AD=BE,
∵AB==2
∴AC=AB=
∵CE2+(CE-2)2=AC2=10,
解得CE=3或-1(不合题意舍去).
则点C坐标为(3,3);
综上可得:点C的坐标为:(6,2)或(4,6)或(3,3).
故答案为:(6,2)或(4,6)或(3,3).
点评:此题考查了全等三角形的判定与性质、等腰直角三角形的性质以及勾股定理.此题难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案