精英家教网 > 初中数学 > 题目详情

【题目】在高尔夫球训练中,运动员在距球洞处击球,其飞行路线满足抛物线,其图象如图所示,其中球飞行高度为,球飞行的水平距离为,球落地时距球洞的水平距离为

1)求的值;

2)若运动员再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球的飞行路线应满足怎样的抛物线,求抛物线的解析式;

3)若球洞处有一横放的高的球网,球的飞行路线仍满足抛物线,要使球越过球网,又不越过球洞(刚好进洞),求的取值范围.

【答案】1;(2;(3

【解析】

(1)把代入,利用待定系数法即可求出抛物线解析式;

(2)根据飞行高度不变可得抛物线的顶点坐标,设出顶点式,进而把原点坐标代入即可求得相应的解析式

(3)把分别代入中即可得到结论.

解:(1由题意得点在抛物线上,

2)要使球刚好进球洞,则抛物线需经过两点,

要使球飞行的高度不变,则最高点的纵坐标为

抛物线的顶点坐标为

设抛物线的解析式为

抛物线经过

3)把代入中,得

代入中,得

要使球越过球网,又不越过球洞(刚好进洞),

的取值范围是

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=﹣2x+4分别交x轴、y轴于点AB.抛物线过AB两点,点P是线段AB上一动点,过点PPCx轴于点C,交抛物线于点D

1)如图1,设抛物线顶点为M,且M的坐标是(),对称轴交AB于点N

求抛物线的解析式;

是否存在点P,使四边形MNPD为菱形?并说明理由;

2)是否存在这样的点D,使得四边形BOAD的面积最大?若存在,求出此时点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在兰州市开展的体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒

乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:

1)样本中喜欢B项目的人数百分比是    ,其所在扇形统计图中的圆心角的度数是    

2)把条形统计图补充完整;

3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的点AC在⊙O上,⊙OAB相交于点D,连接CD,∠A30°DC

1)求圆心O到弦DC的距离;

2)若∠ACB+ADC180°,求证:BC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是菱形边上一点,点的延长线上

1)如图,若,求的度数;

2)如图,若的中点,,求的值;

3)如图,若,点是线段的中点,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】央视经典咏流传开播以来受到社会广泛关注.我市某校就中华文化我传承——地方戏曲进校园的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:

图中A表示很喜欢”,B表示喜欢”,C表示一般”,D表示不喜欢”.

(1)被调查的总人数是_____________人,扇形统计图中C部分所对应的扇形圆心角的度数为_______.

(2)补全条形统计图;

(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有__________人;

(4)在抽取的A5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“树德之声”结束后,王老师和李老师整理了所有参赛选手的比赛成绩(单位:分),绘制成如图频数直方图和扇形统计图:

1)求本次比赛参赛选手总人数,并补全频数直方图;

2)求扇形统计图中扇形D的圆心角度数;

3)成绩在D区域的选手中,男生比女生多一人,从中随机抽取两人,求恰好选中一名男生和一名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两建筑物的水平距离,点测得点的俯角,测得点的俯角,求这两个建筑物的高度.(结果保留整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是任意两个不等实数,我们规定:满足不等式的实数的所有取值的全体叫做闭区间,表示为.对于一个函数,如果它的自变量与函数值满足:当时,有,我们就称此函数是闭区间上的“闭函数”.如函数,当时,;当时,,即当时,有,所以说函数是闭区间上的“闭函数”

1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由;

2)若二次函数是闭区间上的“闭函数”,求的值;

3)若一次函数是闭区间上的“闭函数”,求此函数的表达式(可用含的代数式表示)

查看答案和解析>>

同步练习册答案