精英家教网 > 初中数学 > 题目详情

如图,在平面直角坐标系中,点O是坐标原点,四边形AOCB是梯形,AB∥OC,点A在y轴上,点C在x轴上,且,OB=OC.

1.求点B的坐标;

2.点P从C点出发,沿线段CO以5个单位/秒的速度向终点O匀速运动,过点P作PH⊥OB,垂足为H,设△HBP的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(直接写出自变量t的取值范围);

3.在(2)的条件下,过点P作PM∥CB交线段AB于点M,过点M作MR⊥OC,垂足为R,线段MR分别交直线PH、OB于点E、G,点F为线段PM的中点,联结EF.

①判断EF与PM的位置关系;

②当t为何值时,

 

【答案】

 

1.如图1,过点B作BN⊥OC,垂足为N

 

,OB=OC

∴OA=8,OC=10      -------------------------------1分

∴OB=OC=10, BN=OA=8

 

∴B(6,8)          ----------------------------------------------2分

2.如图1,∵∠BON=∠POH, ∠ONB=∠OHP=90°. 

∴△BON∽△POH    ∴

∵PC=5t.   ∴OP=10-5t.    ∴OH=6-3t. PH=8-4t.

  ∴BH=OB-OH=10-(6-3t)=3t+4   

 ------------------------------------ 3分

∴t的取值范围是:0≤t<2       ------------------------------------------4分

3.①EF⊥PM                          ----------------------------------------------------5分

∵MR⊥OC,PH⊥OB

∴∠RPM+∠RMP=90°,∠HPD+∠HDP=90° 

∵OC=OB      ∴∠OCB=∠OBC.

∵BC∥PM

∴∠RPM=∠HDP,∴∠RMP=∠HPD,即:∠ EMP=∠HPM

∴EM=EP

∵点F为PM的中点    ∴EF⊥PM       ----------6分

②如图2过点B作BN′⊥OC,垂足为 N′,

BN′=8,CN′=4

∵BC∥PM,MR⊥OC

∴△MRP≌△B N′C

∴PR=C N′=4

设EM=x,则EP=x

在△PER中,∠ERP=90°,RE=MR-ME=8-x

,∴x=5

∴ME=5

∵△MGB∽△N′BO     

∵ PM∥CB,AB∥OC

∴四边形BMPC是平行四边形. ∴ BM=PC=5t.

 

第一种情况:当点G在点E上方时(如图2)

∵EG=2,∴MG=EM-EG=5-2=3

  ∴t=                                 --------------------7分

 

 第二种情况:当点G在点E下方时(如图3)

 MG=ME+EG=5+2=7,

 ,∴t=         -------------------------------------------8分

 ∴当t=时,.

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案