精英家教网 > 初中数学 > 题目详情
2.如图,正方形ABCD中内接正三角形AEF.求证:S△EFC=S△ABE+S△ADF

分析 首先连接AC,交EF于点G,易证得Rt△ABE≌Rt△ADF(HL);继而证得AC垂直平分EF,然后设EC=x,再表示出各三角形的面积,即可证得结论.

解答 证明:∵四边形ABCD是正方形,
∴AB=AD,∠B=∠D=90°,
∵△AEF是等边三角形,
∴AE=AF,
在Rt△ABE和Rt△ADF中,
$\left\{\begin{array}{l}{AB=AD}\\{AE=AF}\end{array}\right.$,
∴Rt△ABE≌Rt△ADF(HL);
∴BE=DF,
连接AC,交EF于点G,
∵BC=CD,BE=DF
∴BC-BE=CD-DF,即CE=CF,
又∵AE=AF,
∴AC垂直平分EF.
设EC=x,由勾股定理,得EF=$\sqrt{E{C}^{2}+F{C}^{2}}$=$\sqrt{2}$x,
由直角三角形斜边上中线的性质可知:CG=$\frac{1}{2}$EF=$\frac{\sqrt{2}}{2}$x,
在Rt△AEG中,AG=AEsin60°=EFsin60°=2×CGsin60°=$\frac{\sqrt{6}}{2}$x,
∴AC=AG+CG=$\frac{\sqrt{2}+\sqrt{6}}{2}$x,
∴AB=$\frac{\sqrt{2}}{2}$AC=$\frac{1+\sqrt{3}}{2}$x,
∴BE=BC-CE=$\frac{1+\sqrt{3}}{2}$x-x=$\frac{\sqrt{3}-1}{2}$x,
∴S△CEF=$\frac{1}{2}$EC•CF=$\frac{1}{2}$x2,S△ABE=$\frac{1}{2}$×$\frac{1+\sqrt{3}}{2}$x×$\frac{\sqrt{3}-1}{2}$x=$\frac{1}{4}$x2
∴S△ADF=S△ABE=$\frac{1}{4}$x2
∴S△ABE+S△ADF=S△CEF

点评 此题考查了正方形的性质、全等三角形的判定与性质、线段垂直平分线的性质以及三角函数等知识.注意准确作出辅助线是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.校园广播主持人培训班开展比赛活动,分为 A、B、C、D四个等级,对应的成绩分别是9分、8分、7分、6分,根据如图不完整的统计图解答下列问题:
(1)补全下面两个统计图(不写过程);
(2)求该班学生比赛的平均成绩;
(3)现准备从等级A的4人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,已知直线l1:y=-2x+4与直线l2:y=kx+b(k≠0)在第一象限交于点M.若直线l2与x轴的交点为A(-2,0),则k的取值范围是(  )
A.-2<k<2B.-2<k<0C.0<k<4D.0<k<2

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如图,点M,N在半圆的直径AB上,点P,Q在$\widehat{AB}$上,四边形MNPQ为正方形.若半圆的半径为$\sqrt{5}$,则正方形的边长为2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.小明向如图所示的正方形ABCD区域内投掷飞镖,点E是以AB为直径的半圆与对角线AC的交点.如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{8}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.已知△ABC,BC的长和BC边上的高AD分别是x,y,它的面积是5.
(1)求出y与x之间的函数解析式.
(2)请通过列表、描点、连线的点法画出这个函数的图象.
(3)若自变量的取值范围是0<x≤10,则y的最大值或最小值是多少?此时,x的值是多少?简单说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.己知直线y=kx+b垂直于直线y=2x+3,且过点(-2,3),试确定一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.两组邻边分别相等的四边形我们称它为筝形.如图,在四边形ABCD中,AB=AD,BC=DC,AC与BD相交于点O,下列判断正确的有(  )
①AC⊥BD;
②AC、BD互相平分;
③AC平分∠BCD;
④∠ABC=∠ADC=90°;
⑤筝形ABCD的面积为$\frac{1}{2}$AC•BD.
A.①③⑤B.①③④C.③④⑤D.①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.2016年11月28日,神州十一号返回舱成功着陆.假如返回舱着陆后A地为一个直径为2m的圆形,工作人员用警戒带在其外围至少1米外圈成一个面积为80m2的长方形,其俯视如图1所示.设长方形的长为ym,宽为xm.
(1)求y与x的函数关系式;并在图2的平面直角坐标系中画出其函数图象;
(2)若警戒带长只有36m,求能围成符合要求的长方形的宽的取值范围.

查看答案和解析>>

同步练习册答案