精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,ABBD,sinA=,将ABCD放置在平面直角坐标系中,且ADx轴,点D的横坐标为1,点C的纵坐标为3,恰有一条双曲线y=(k>0)同时经过B、D两点,则点B的坐标是_____

【答案】).

【解析】

连结DB,作BH⊥AD于H,DE⊥BC于E,如图,

∵AB⊥BD,∴∠ABD=90°,

在Rt△ABD中,sin∠A==

设BD=4t,则AD=5t,∴AB= =3t,

在Rt△ABH中,∵sin∠A=

∴BH=×3t= t,

∵四边形ABCD为平行四边形,

∴AD∥BC,AD=BC=5t,CD=AB=3t,

而AD⊥x轴,∴BC⊥x轴,

在Rt△CDE中,CE=

∴D(1,k),点C的纵坐标为3,

∴B(1+,3﹣5t),k=3﹣

∵1k=(1+ )(3﹣5t),即3﹣ =(1+ )(3﹣5t),

整理得3t2﹣t=0,解得t1=0(舍去),t2=

∴B

故答案为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,在△ABC中,∠C=90°,AC=BC=7DAB的中点,点EAC上,点FBC上,DE=DF,若BF=4,则EF=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图①,ABC是等边三角形,点DE分别在边ABBC上,且BD=BE,连接DE

1)求证:DEAC

2)将图①中的BDE绕点B顺时针旋转,使得点ADE在同一条直线上,如图②,求∠AEC的度数;

3)在(2)的条件下,如图③,连接CD,过点DDMBE于点M,在线段BM上取点N,使得∠DNE+DCE=180°.请探索三条线段ENMNEC之间的关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙三位歌手进入我是歌手的决赛,他们通过抽签来决定演唱顺序.

(1)求甲第一位出场的概率;

(2)求甲比乙先出场的概率,请用列表或画树状图的方法进行分析说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为(  )

A. y=﹣ B. y=﹣ C. y=﹣ D. y=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,A(1,0)、B(0,2),BA=BC,ABC=90°,则点 C 的坐标为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,A点的坐标为(m,3),AB⊥x轴于点B,tan∠OAB=,反比例函数y1=的图象的一支经过AO的中点C,且与AB交于点D.

(1)求反比例函数解析式;

(2)设直线OA的解析式为y2=nx,请直接写出y1<y2时,自变量x的取值范围   

(3)如图2,若函数y=3xy1=的图象的另一支交于点M,求△OMB与四边形OCDB的面积的比值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以正方形ABCD的边AB为直径作O,E是O上的一点,EFAB于F,AFBF,作直线DE交BC于点G.若正方形的边长为10,EF=4.

(1)分别求AF、BF的长.

(2)求证:DG是O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1,x2

(1)求m的取值范围.

(2)若2(x1+x2)+ x1x2+10=0.求m的值.

查看答案和解析>>

同步练习册答案