精英家教网 > 初中数学 > 题目详情

【题目】已知,在△ABC中,∠C=90°,AC=BC=7DAB的中点,点EAC上,点FBC上,DE=DF,若BF=4,则EF=_______

【答案】5

【解析】

分别就EFAC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.

解:①过D作DG⊥AC,DH⊥BC,垂足为G,H

∴DG∥BC,∠CDG=∠CDH=45°

又∵DAB的中点,

∴DG=BC

同理:DH=AC

又∵BC=AC

∴DG=DH

在Rt△DGE和Rt△DHF中

DG=DH,DE=DF

∴Rt△DGE≌Rt△DHF(HL)

∴GE=HF

又∵DG=DH,DC=DC

∴△GDC≌△FHC

∴CG=HC

∴CE=GC-GE=CH-HF=CF=AB-BF=3

∴EF=

②过D作DG⊥AC,DH⊥BC,垂足为G,H

∴DG∥BC,∠CDG=∠CDH=45°

又∵DAB的中点,

∴DG=BC

同理:DH=AC

又∵BC=AC

∴DG=DH

在Rt△DGE和Rt△DHF中

DG=DH,DE=DF

∴Rt△DGE≌Rt△DHF(HL)

∴GE=HF

又∵DG=DH,DC=DC

∴△GDC≌△FHC

∴CG=HC

∴CE=CF=AC+AE=AB+BF=7+4=11

∴EF=

③如图,以点D为圆心,以DF长为半径画圆交AC边分别为E、,过点D作DH⊥AC于点H,可知,可证△EHD≌△,△DHC为等腰直角三角形,

∴∠1+∠2=45°

∴∠EDF=2(∠1+∠2)=90°

∴△EDF为等腰直角三角形

可证

∴AE=CF=3,CE=BF=4

④有第知,EF=5,且△EDF为等腰直角三角形,

ED=DF=,可证,

综上可得:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACDBC边上一点,∠A=36°BD平分∠ABCAC于点D.

1)求证:BD=BC

2)写出图中所有的等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长ACE,使CE=AC.

(1)求证:DE=DB;

(2)连接BE,试判断△ABE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtBCD中,∠CBD=90°,BC=BD,点ACB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EFEA,交CD所在直线于点F.

(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;

(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AEEF又有怎样的数量关系?请直接写出你的猜想,不需证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,△ACB中,∠CAB的平分线与过BC边垂直平分线DE交于E点,EFAB,垂足是FEGAC,垂足是G.

1)求证:BF=CG

2)若AB=aAC=b(a>b),求BF(ab表示BF).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边 中, ,点 从点 出发沿 方向运动,连接 ,以 为边,在 右侧按如图方式作等边 ,当点P从点E运动到点A时,求点F运动的路径长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,ACB=90°,A=30°,AB的垂直平分线分别交ABAC于点D,E.

(1)求证:AE=2CE;

(2)连接CD,请判断BCD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ABBD,sinA=,将ABCD放置在平面直角坐标系中,且ADx轴,点D的横坐标为1,点C的纵坐标为3,恰有一条双曲线y=(k>0)同时经过B、D两点,则点B的坐标是_____

查看答案和解析>>

同步练习册答案