精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+bx+cy轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.

(1)求此抛物线的解析式.

(2)点Px轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.

【答案】(1)抛物线的解析式为y=x2+4x+2;(2)P的坐标为(﹣6,0)或(﹣13,0).

【解析】1)由对称轴直线x=2,以及A点坐标确定出bc的值,即可求出抛物线解析式;

(2)由抛物线的对称轴及BC的长,确定出BC的横坐标,代入抛物线解析式求出纵坐标,确定出BC坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过QQHy轴,与y轴交于点H,BCy轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.

1)由题意得:x=﹣=﹣=﹣2,c=2,

解得:b=4,c=2,

则此抛物线的解析式为y=x2+4x+2;

(2)∵抛物线对称轴为直线x=﹣2,BC=6,

B横坐标为﹣5,C横坐标为1,

x=1代入抛物线解析式得:y=7,

B(﹣5,7),C(1,7),

设直线AB解析式为y=kx+2,

B坐标代入得:k=﹣1,即y=﹣x+2,

作出直线CP,与AB交于点Q,过QQHy轴,与y轴交于点H,BCy轴交于点M,

可得AQH∽△ABM,

∵点Px轴上,直线CPABC面积分成2:3两部分,

AQ:QB=2:3AQ:QB=3:2,即AQ:AB=2:5AQ:QB=3:5,

BM=5,

QH=2QH=3,

QH=2时,把x=﹣2代入直线AB解析式得:y=4,

此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);

QH=3时,把x=﹣3代入直线AB解析式得:y=5,

此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),

综上,P的坐标为(﹣6,0)或(﹣13,0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为6cm的等边三角形,点DB点出发沿B→A方向在线段BA上以a cm/s速度运动,与此同时,点E从线段BC的某个端点出发,以b cm/s速度在线段BC上运动,当D到达A点后,D、E运动停止,运动时间为t(秒).

(1)如图1,若a=b=1,点EC出发沿C→B方向运动,连AE、CD,AE、CD交于F,连BF.当0t6时:

①求∠AFC的度数;

②求的值;

(2)如图2,若a=1,b=2,点EB点出发沿B→C方向运动,E点到达C点后再沿C→B方向运动.当t3时,连DE,以DE为边作等边△DEM,使M、BDE两侧,求M点所经历的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在△ABC中,∠BAC=106°,EFMN分别是ABAC的垂直平分线,点ENBC上,则∠EAN=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ACB中,∠ACB=90°,AC=BC,点C的坐标为(﹣2,0),点A的坐标为(﹣6,3),求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…,记△B1CB2的面积为S1B2C1B3的面积为S2B3C2B4的面积为S3,如此下去,则Sn=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),yx之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.

(1)甲车间每天加工零件为_____件,图中d值为_____

(2)求出乙车间在引入新设备后加工零件的数量yx之间的函数关系式.

(3)甲车间加工多长时间时,两车间加工零件总数为1000件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,在△ABC中,∠C=90°,AC=BC=7DAB的中点,点EAC上,点FBC上,DE=DF,若BF=4,则EF=_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买种图书花费了3000元,购买种图书花费了1600元,A种图书的单价是种图书的1.5倍,购买种图书的数量比种图书多20本.

1)求两种图书的单价;

2)书店在世界读书日进行打折促销活动,所有图书都按8折销售学校当天购买了种图书20本和种图书25本,共花费多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙、丙三位歌手进入我是歌手的决赛,他们通过抽签来决定演唱顺序.

(1)求甲第一位出场的概率;

(2)求甲比乙先出场的概率,请用列表或画树状图的方法进行分析说明.

查看答案和解析>>

同步练习册答案