精英家教网 > 初中数学 > 题目详情

【题目】已知:如图①,ABC是等边三角形,点DE分别在边ABBC上,且BD=BE,连接DE

1)求证:DEAC

2)将图①中的BDE绕点B顺时针旋转,使得点ADE在同一条直线上,如图②,求∠AEC的度数;

3)在(2)的条件下,如图③,连接CD,过点DDMBE于点M,在线段BM上取点N,使得∠DNE+DCE=180°.请探索三条线段ENMNEC之间的关系,并证明你的结论.

【答案】(1)见解析;(2)60°;(3)见解析.

【解析】

1)由△ABC是等边三角形得∠B=60°,再由BD=BE,得△BDE是等边三角形,所以∠BED=C=60°,可得DEAC

2)由旋转,易证△BAD≌△BCE,所以∠BEC=BDA=180°-BDE=120°,所以∠AEC=BEC-BED=60°.

3)在四边形CDNE中, 由(2)中∠NEC=120°易得∠NDC=60°,然后利用角边角证明△BDN≌△EDC,得出BN=EC,然后在BE边上利用线段关系可推出关系式.

证明:(1)∵△ABC为等边三角形,∴∠B=C=60°,

又∵BD=BE,∴△BDE为等边三角形,∴∠BEC=60°,

∴∠BEC=C,∴DEAC.

2)∵∠ABD+DBC=60°,∠CBE+DBC=60°

∴∠ABD=CBE

在△ABD和△CBE中,

∴△ABD≌△CBESAS

∴∠BEC=BDA

又∵ADE在一条直线,

∴∠BDA+BDE=180°,

又∵∠BDE=60°,∴∠BDA=BEC=120°,

∴∠AEC=BEC-BED=120°-60°=60°

3)在四边形CDNE中,∵∠DNE+DCE=180°

∴∠NDC+NEC=180°,

由(2)可知∠NEC=120°,∴∠NDC=60°

∴∠CDE+NDE=60°,

∵∠BDN+NDE=60°,

∴∠BDN=CDE

在△BDN和△EDC中,

∴△BDN≌△EDCASA

BN=EC

在等边△BDE中,DMBE

BM=ME

EN=MN+ME=MN+BM=MN+BN+MN=2MN+EC

ENMNEC之间的关系的关系是EN=2MN+EC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB,延长ACE,使CE=AC.

(1)求证:DE=DB;

(2)连接BE,试判断△ABE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边 中, ,点 从点 出发沿 方向运动,连接 ,以 为边,在 右侧按如图方式作等边 ,当点P从点E运动到点A时,求点F运动的路径长?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC,ACB=90°,A=30°,AB的垂直平分线分别交ABAC于点D,E.

(1)求证:AE=2CE;

(2)连接CD,请判断BCD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MAN是一钢架,为了使钢架更加坚固,需要在其内部添加一些钢管BC,CD,DE……,添加的钢管长度都与AB相等,若只能添加这样的钢管4根,则∠MAN的范围____________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国道路交通安全法第四十七条规定“机动车行经人行横道时,应当减速行驶;遇行人通过人行横道,应当停车让行” 如图:一辆汽车在一个十字路口遇到行人时刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是,如果斑马线的宽度是米,驾驶员与车头的距离是米,这时汽车车头与斑马线的距离x是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,一次函数x轴、y轴分别交于点A和点BA点坐标为(3,0),∠OAB=45°

1)求一次函数的表达式;

2)点Px轴正半轴上一点,以P为直角顶点,BP为腰在第一象限内作等腰Rt△BPC,连接CA并延长交y轴于点Q

若点P的坐标为(4,0,求点C的坐标,并求出直线AC的函数表达式;

P点在x轴正半轴运动时,Q点的位置是否发现变化?若不变,请求出它的坐标;如果变化,请求出它的变化范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ABBD,sinA=,将ABCD放置在平面直角坐标系中,且ADx轴,点D的横坐标为1,点C的纵坐标为3,恰有一条双曲线y=(k>0)同时经过B、D两点,则点B的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是∠AOB内任意一点,∠AOB30°OP8,点M和点N分别是射线OA和射线OB上的动点,则△PMN周长的最小值为(  )

A. 5B. 6C. 8D. 10

查看答案和解析>>

同步练习册答案