精英家教网 > 初中数学 > 题目详情
精英家教网如图,边长为1的正方形ABCD绕着点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为(  )
A、
1
2
B、
3
3
C、1-
3
3
D、1-
3
4
分析:设B′C′与CD的交点是E,连接AE,根据旋转的性质可得到AD=AB′,∠DAB′=60°,根据三角函数可求得B′E的长,从而求得△ADE的面积,进而求出阴影部分的面积.
解答:精英家教网解:设B′C′与CD的交点是E,连接AE
根据旋转的性质得:AD=AB′,∠DAB′=60°.
在直角三角形ADE和直角三角形AB′E中,
AB′=AD
AE=AE

∴△ADE≌△AB′E(HL),
∴∠B′AE=30°,
∴B′E=A′Btan∠B′AE=1×tan30°=
3
3

∴S△ADE=
3
6

∴S四边形ADEB′=
3
3

∴阴影部分的面积为1-
3
3

故选C.
点评:此题考查了旋转的性质和正方形的性质,解答此题要特别注意根据旋转的性质得到相等的线段、相等的角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,边长为
π2
的正△ABC,点A与原点O重合,若将该正三角形沿数轴正方向翻滚一周,点A恰好与数轴上的点A′重合,则点A′对应的实数是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图将边长为1的正方形OAPB沿轴正方向连续翻转2006次,点P依次落在点,……的位置,则的横坐标=_________.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年新人教版九年级(上)期中数学试卷(7)(解析版) 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案