【题目】如图,ABCD是平行四边形,E、F是对角线AC上的两点,若∠ABF=∠CDE=90°.
(1)求证:四边形BEDF是平行四边形;
(2)若AB=AD=8,BF=6,求AE的长.
【答案】(1)见解析;(2).
【解析】
(1)由平行四边形的性质得出AB=CD,AB∥CD,证出∠BAC=∠DCA,由ASA证明△ABF≌△CDE,得出BF=DE,∠AFB=∠CED,证出BF∥DE,即可得出结论;
(2)连接BD交AC于G,证明四边形ABCD是菱形,得出AC⊥BD,证出四边形BEDF是菱形,得出BE=BF=6,由勾股定理求出AF,由三角形的面积关系求出BG,再由勾股定理求出EG,即可得出结果.
(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠BAC=∠DCA,
在△ABF和△CDE中,,
∴△ABF≌△CDE(ASA),
∴BF=DE,∠AFB=∠CED,
∴BF∥DE,
∴四边形BEDF是平行四边形;
(2)连接BD交AC于G,如图所示:
∵AB=AD,
∴四边形ABCD是菱形,
∴AC⊥BD,
∴四边形BEDF是菱形,
∴BE=BF=6,EG=FG,
∵∠ABF=90°,AB=AD=8,BF=6,
∴AF==10,
∵△ABF的面积=AF·BG=AB×BF,
∴BG==,
∴EG==,
∴AE=AF-2EG=10-2×=.
科目:初中数学 来源: 题型:
【题目】某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1936元;若多买88个,就可享受8折优惠,同样只需付款1936元.请问该学校九年级学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中抽出一张记下数字,放回洗匀后再从中随机抽出一张记下数字.
(1)请用列表或画树形图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;
(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上y= 上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我校50名学生在某一天调查了75户家庭丢弃塑料袋的情况,统计结果如下表:
根据上表回答下列问题:
(1)这天,一个家庭一天最多丢弃________个塑料袋.
(2)这天,丢弃3个塑料袋的家庭户数占总户数的________.
(3)该校所在的居民区共有居民0.8万户,则该区一天丢弃的塑料袋有多少个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.
(1)求证:CP=AQ;
(2)若BP=1,PQ=,∠AEF=45°,求矩形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:,善于思考的小明进行了以下探索:
设(其中均为整数),则有.
∴.这样小明就找到了一种把部分的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
当均为正整数时,若,用含m、n的式子分别表示,得= ,= ;
(2)利用所探索的结论,找一组正整数,填空: + =( + )2;
(3)若,且均为正整数,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A,B.若∠AOB=135°,则k的值是( )
A.2
B.4
C.6
D.8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某月的月历,用如图恰好能完全遮盖住月历表中的五个数字,设带阴影的“”形中的5个数字的最小数为a.
请用含a的代数式表示这5个数;
这五个数的和与“”形中心的数有什么关系?
盖住的5个数字的和能为105吗?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com