精英家教网 > 初中数学 > 题目详情

【题目】如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A,B.若∠AOB=135°,则k的值是( )

A.2
B.4
C.6
D.8

【答案】D
【解析】解:方法1、作BF⊥x轴,OE⊥AB,CQ⊥AP;设P点坐标(n, ),

∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,

∴C(0,﹣4),G(﹣4,0),

∴OC=OG,

∴∠OGC=∠OCG=45°

∵PB∥OG,PA∥OC,

∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,

∴PA=PB,

∵P点坐标(n, ),

∴OD=CQ=n,

∴AD=AQ+DQ=n+4;

∵当x=0时,y=﹣x﹣4=﹣4,

∴OC=DQ=4,GE=OE= OC=

同理可证:BG= BF= PD=

∴BE=BG+EG= +

∵∠AOB=135°,

∴∠OBE+∠OAE=45°,

∵∠DAO+∠OAE=45°,

∴∠DAO=∠OBE,

∵在△BOE和△AOD中,

∴△BOE∽△AOD;

= ,即 =

整理得:nk+2n2=8n+2n2,化简得:k=8;

所以答案是:D.

方法2、如图1,

过B作BF⊥x轴于F,过点A作AD⊥y轴于D,

∵直线AB函数式为y=﹣x﹣4,PB⊥y轴,PA⊥x轴,

∴C(0,﹣4),G(﹣4,0),

∴OC=OG,

∴∠OGC=∠OCG=45°

∵PB∥OG,PA∥OC,

∴∠PBA=∠OGC=45°,∠PAB=∠OCG=45°,

∴PA=PB,

∵P点坐标(n, ),

∴A(n,﹣n﹣4),B(﹣4﹣

∴AD=AQ+DQ=n+4;

∵当x=0时,y=﹣x﹣4=﹣4,

∴OC=4,

当y=0时,x=﹣4.

∴OG=4,

∵∠AOB=135°,

∴∠BOG+∠AOC=45°,

∵直线AB的解析式为y=﹣x﹣4,

∴∠AGO=∠OCG=45°,

∴∠BGO=∠OCA,∠BOG+∠OBG=45°,

∴∠OBG=∠AOC,

∴△BOG∽△OAC,

=

=

在等腰Rt△BFG中,BG= BF=

在等腰Rt△ACD中,AC= AD= n,

∴k=8,

所以答案是:D.

【考点精析】通过灵活运用反比例函数的图象和相似三角形的判定,掌握反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点;相似三角形的判定方法:两角对应相等,两三角形相似(ASA);直角三角形被斜边上的高分成的两个直角三角形和原三角形相似; 两边对应成比例且夹角相等,两三角形相似(SAS);三边对应成比例,两三角形相似(SSS)即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在下列条件中,不能证明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADCBD=DC

C.B=CBAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD是平行四边形,EF是对角线AC上的两点,若∠ABF=∠CDE90°.

(1)求证:四边形BEDF是平行四边形;

(2)ABAD8BF6,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OF是∠MON的平分线,点A在射线OM上,P,Q是直线ON上的两动点,点Q在点P的右侧,且PQ=OA,作线段OQ的垂直平分线,分别交直线OF,ON于点B、点C,连接AB,PB.

(1)如图1,当P、Q两点都在射线ON上时,请直接写出线段AB与PB的数量关系;
(2)如图2,当P、Q两点都在射线ON的反向延长线上时,线段AB,PB是否还存在(1)中的数量关系?若存在,请写出证明过程;若不存在,请说明理由;
(3)如图3,∠MON=60°,连接AP,设 =k,当P和Q两点都在射线ON上移动时,k是否存在最小值?若存在,请直接写出k的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+4交y轴于点A,并经过B(4,4)和C(6,0)两点,点D的坐标为(4,0),连接AD,AB,BC,点E从点A出发,以每秒 个单位长度的速度沿线段AD向点D运动,到达点D后,以每秒1个单位长度的速度沿射线DC运动,设点E的运动时间为t秒,过点E作AB的垂线EF交直线AB于点F,以线段EF为斜边向右作等腰直角△EFG.

(1)求抛物线的解析式;
(2)当点G落在第一象限内的抛物线上时,求出t的值;
(3)设点E从点A出发时,点E,F,G都与点A重合,点E在运动过程中,当△BCG的面积为4时,直接写出相应的t值,并直接写出点G从出发到此时所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】经过点(2,0)且与坐标轴围成的三角形面积为2的直线解析式是__________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个三角形中,如果一个角是另一个角的3倍,这样的三角形我们称之为“灵动三角形”.如,三个内角分别为120°,40°,20°的三角形是“灵动三角形”.

如图,∠MON60°,在射线OM上找一点A,过点AABOMON于点B,以A为端点作射线AD,交线段OB于点C(规定0°< ∠OAC < 90°).

1)∠ABO的度数为   °,△AOB   (填“是”或“不是”灵动三角形);

2)若∠BAC60°,求证:△AOC为“灵动三角形”;

3)当△ABC为“灵动三角形”时,求∠OAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在边CD上的点F处,若△DEF的周长为8,△CBF的周长为18,则FC的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的长度.如图2,在某一时刻,光线与水平面的夹角为72°,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,若1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆AB的长度.(结果精确到0.1米.参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08).

查看答案和解析>>

同步练习册答案