精英家教网 > 初中数学 > 题目详情

【题目】如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)

【答案】塔CD的高度为37.9米

【解析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即RtBEDRtDAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC

试题解析:作BECDE

可得RtBED和矩形ACEB

则有CE=AB=16AC=BE

RtBED中,∠DBE=45°DE=BE=AC

RtDAC中,∠DAC=60°DC=ACtan60°=AC

16+DE=DC

16+AC=AC

解得:AC=8+8=DE

所以塔CD的高度为(8+24)米≈37.9米,

答:塔CD的高度为37.9米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),抛物线与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论

①a-b+c>0;②3a+b=0;

③b2=4a(c-n);

④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.

其中正确结论的个数是(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明从P点出发,沿北偏东60°方向行驶到达A处,接着向正南方向行驶100(+1)米到达B处.在B处观测到出发时所在的P处在北偏西45°方向上,P,A两处相距多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A0a)、Bb0).

1)若ab满足a2+b28a4b+20=0.如图,在第一象限内以AB为斜边作等腰RtABC,请求四边形AOBC的面积S

2)如图,若将线段AB沿x轴向正方向移动a个单位得到线段DED对应AE对应B)连接DO,作EFDOF,连接AFBF,判断AFBF的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的盒子里,装有四个分别标有数字1,2,3,4的小球,它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.

(1)用列表法表示出(x,y)的所有可能出现的结果;

(2)求小明、小华各取一次小球所确定的点(x,y)落在反比例函数y=的图象上的概率;

(3)求小明、小华各取一次小球所确定的数x,y满足y的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们用表示不大于的最大整数,例如:;用表示大于的最小整数,例如:.解决下列问题:

1= ,=

2)若=2,则的取值范围是 ;若=1,则的取值范围是

3)已知满足方程组,求的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形AEFG的顶点EG分别在正方形ABCDABAD边上,连接B,交EF于点M,交FG于点N,设AE=aAG=bAB=cbac).

1)求证:

2)求AMN的面积(用abc的代数式表示);

3)当∠MAN=45°时,求证:c2=2ab

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线my=﹣0.25x+h2+kx轴的交点为AB,与y轴的交点为C,顶点为M36.25),将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为D

1)求抛物线n的解析式;

2)设抛物线nx轴的另一个交点为E,点P是线段DE上一个动点(P不与DE重合),过点Py轴的垂线,垂足为F,连接EF.如果P点的坐标为(xy),PEF的面积为S,求Sx的函数关系式,写出自变量x的取值范围,并求出S的最大值;

3)设抛物线m的对称轴与x轴的交点为G,以G为圆心,AB两点间的距离为直径作⊙G,试判断直线CM与⊙G的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如图所示(其中AB,BC分别为线段,CD为双曲线的一部分):

(1)分别求出线段AB和曲线CD的函数关系式;

(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?

(3)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?

查看答案和解析>>

同步练习册答案