【题目】某景区的三个景点A,B,C在同一线路上.甲、乙两名游客从景点A出发,甲步行到景点C;乙先乘景区观光车到景点B,在B处停留一段时间后,再步行到景点C,甲、乙两人同时到达景点C.甲、乙两人距景点A的路程y(米)与甲出发的时间x(分)之间的函数图象如图所示:
(1)甲步行的速度为_____米/分,乙步行时的速度为_____米/分;
(2)求乙乘景区观光车时y与x之间的函数关系式;
(3)问甲出发多长时间与乙在途中相遇,请直接写出结果.
【答案】(1)60,80;(2)y=300x﹣6000(20≤x≤30);(3)甲出发25分钟和50分钟与乙两次在途中相遇.
【解析】
(1)由图象得相应的路程和时间,利用路程除以时间得速度;
(2)设乙乘景区观光车时y与x之间的函数关系式为y=kx+b(k≠0),将(20,0),(30,3000)代入,求出k和b的值再代回即可;
(3)先求出甲的函数解析式,再将其与乙乘观光车时的解析式联立得第一次相遇时间;在甲的解析式中,令y=3000,求得第二次相遇时间.
(1)甲步行的速度为:5400÷90=60(米/分);
乙步行的速度为:(5400﹣3000)÷(90﹣60)=80(米/分).
故答案为:60,80;
(2)解:根据题意,设乙乘景区观光车时y与x之间的函数关系式为y=kx+b(k≠0),将(20,0),(30,3000)代入得:
解得:.
∴乙乘景区观光车时y与x之间的函数关系式为y=300x﹣6000(20≤x≤30)
(3)设甲的函数解析式为:y=kx,将(90,5400)代入得k=60,
∴y=60x.
由得x=25,即甲出发25分钟与乙第一次相遇;
在y=60x中,令y=3000得:x=50,此时甲与乙第二次相遇.
甲出发25分钟和50分钟与乙两次在途中相遇.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CA=CB=10,AB=12,以BC为直径的圆⊙O交AC于点G,交AB于点D,过点D作⊙O的切线,交CB的延长线于点E,交AC于点F.则下列结论:①DF⊥AC;②DO=DB;③cos∠E=.正确的是__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】团体购买某公园门票,票价如表,某单位现要组织其市场部和生产部的员工游览该公园.如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元.那么该公司这两个部门的人数之差为( )
A. 20B. 35C. 30D. 40
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小黑先从口袋里随机不放回地取出一个小球,记下数字为x;小白在剩下有三个小球中随机取出一个小球,记下数字y.
(1)计算由x、y确定的点(x,y)在函数图象上的概率;
(2)小黑、小白约定做一个游戏,其规则是:若x、y满足xy>6,则小黑胜;若x、y满足xy<6,则小白胜.这个游戏规则公平吗?说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:
时间x(天) | 1≤x<50 | 50≤x≤90 |
售价(元/件) | x+40 | 90 |
每天销量(件) | 200-2x |
已知该商品的进价为每件30元,设销售该商品的每天利润为y元[
(1)求出y与x的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?
(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:
频数频率分布表
成绩x(分) | 频数(人) | 频率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根据所给信息,解答下列问题:
(1)m= ,n= ;
(2)补全频数分布直方图;
(3)这200名学生成绩的中位数会落在 分数段;
(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.
(1)“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;
(2)从中任意抽取1个球恰好是红球的概率是 ;
(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线轴于点(1,0),直线轴于点(2,0),直线轴于点(3,0),…,直线轴于点(n,0)。函数的图象与直线分别交于点;函数的图象与直线分别交于点。如果的面积记作,四边形的面积记作,四边形的面积记作,…,四边形的面积记作,那么_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD的面积为____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com