精英家教网 > 初中数学 > 题目详情
精英家教网如图,梯形ABCD,对角线AC与BD相交于O,设AD=a,BC=b,△AOD,△AOB,△BOC,△COD的面积分别为S1、S2、S3、S4,则下列各式中错误的是(  )
A、
S1
S3
=
a2
b2
B、
S1
S2
=
a
b
C、
S4
S3
=
a
b
D、S1+S3=S2+S4
分析:相似三角形的面积比等于对应边长的平方比,依此可判定A,B,C的正确性,D中面积的和只可能成比例,并不相等
解答:解:∵AD∥BC,精英家教网
∴△AOD∽△COB,
S1
S3
=
a2
b2

∴A正确;
同理,∵△AOD∽△COB,
OD
OB
=
OA
OC
=
a
b

∵△AOD与△AOB等高,
∴S1:S2=AD:BC=a:b,B正确.
同理C也正确,
由B,C可知S1=
a
b
S2
,S3=
b
a
S4

S1+S3=
a2+b2
ab
(S2+S4
所以D错误.
故选D.
点评:熟练掌握相似三角形的性质,能够利用相似三角形的性质求解一些线段的比例及面积之间的比例问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,AB∥CD,E是AD中点,EF∥CB交AB于F,BC=4cm,则EF的长等于(  )
A、1.5cmB、2cmC、2.5cmD、3cm

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD中,EF∥BC,AD=4,EF=5,BC=7,则DF:FC=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,梯形ABCD中,AD∥BC,CD⊥BC,已知AB=5,BC=6,cosB=
35
.点O为BC边上的动点,以O为圆心,BO为半径的⊙O交边AB于点P.
(1)设OB=x,BP=y,求y与x的函数关系式,并写出函数定义域;
(2)当⊙O与以点D为圆心,DC为半径⊙D外切时,求⊙O的半径;
(3)连接OD、AC,交于点E,当△CEO为等腰三角形时,求⊙O的半径.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,梯形ABCD内接于⊙O,AD∥BC,∠DAB=49°,则∠AOC的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,梯形ABCD中,DE∥AB交下底BC于E,AF∥CD交下底BC于F,且DE⊥AF,垂足为O.若AO=3cm,DO=4cm,四边形ABED的面积为36cm2,则梯形ABCD的周长为(  )

查看答案和解析>>

同步练习册答案