精英家教网 > 初中数学 > 题目详情
15.计算:
(1)(-$\sqrt{3}$)0÷(-2)-2-23×2-2
(2)(2x-1)(2x+1)-(x-6)(4x+3)

分析 (1)原式利用零指数幂、负整数指数幂法则,以及乘方的意义计算即可得到结果;
(2)原式利用平方差公式,以及多项式乘以多项式法则计算即可得到结果.

解答 解:(1)原式=1×4-8×$\frac{1}{4}$=4-2=2;
(2)原式=4x2-1-(4x2+3x-24x-18)=4x2-1-4x2+21x+18=21x+17.

点评 此题考查了实数的运算,以及整式的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

5.计算:$\frac{2m-1}{m-1}-\frac{m}{m-1}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读与计算:阅读以下材料,并完成相应的任务.
斐波那契(约1170-1250)是意大利数学家,他研究了一列数,
这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一
列数称为数列).后来人们在研究它的过程中,发现了许多意想不到
的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的
瓣数恰是斐波那契数列中的数,斐波那契数列还有很多有趣的性质,
在实际生活中也有广泛的应用.
斐波那契数列中的第n个数可以用$\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n}]$
表示(其中n≥1),这是用无理数表示有理数的一个范例.
任务:请根据以上材料,通过计算求出裴波那契数列中的第1个数和第2个数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若解关于x的方程$\frac{3}{1-x}$$+\frac{2}{x+1}$=$\frac{a}{{x}^{2}-1}$有增根,则这个方程的增根是±1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.如图,AB∥CD,点E在CD上,且BA=BE,∠AEC=70°,那么∠B=40°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,在平行四边形ABCD中,E是BC上一点,且AB=BE,AE的延长线交DC的延长线于点F,若∠F=62°,则∠D=56度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在△ABC中,∠C=90°,BC:AC=1:$\sqrt{3}$,CD⊥AB于D,求△ABC与△CDB的面积之比?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是⊙O外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=2$\sqrt{3}$,BC=2.求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC、AC于点D、E,连接AD,过点D作DF⊥AB,垂足为点F.
(1)求证:DF是⊙O的切线;
(2)若AE=DE,求∠C的度数;
(3)求证:CD2=AC•BF.

查看答案和解析>>

同步练习册答案