【题目】如图,四边形ABCD是正方形,点E在直线BC上,连接AE.将△ABE沿AE所在直线折叠,点B的对应点是点B′,连接AB′并延长交直线DC于点F.
(1)当点F与点C重合时如图1,证明:DF+BE=AF;
(2)当点F在DC的延长线上时如图2,当点F在CD的延长线上时如图3,线段DF、BE、AF有怎样的数量关系?请直接写出你的猜想,并选择一种情况给予证明.
【答案】(1)证明见解析(2)证明见解析
【解析】试题分析:(1)由折叠可得AB=AB′,BE=B′E,再根据四边形ABCD是正方形,易证B′E=B′F,即可证明DF+BE=AF;
(2)图(2)的结论:DF+BE=AF;图(3)的结论:BE-DF=AF;证明图(2):延长CD到点G,使DG=BE,连接AG,需证△ABE≌△ADG,根据CB∥AD,得∠AEB=∠EAD,即可得出∠B′AE=∠DAG,则∠GAF=∠DAE,则∠AGD=∠GAF,即可得出答案BE+DF=AF.
试题解析:
解:(1)由折叠可得AB=AB′,BE=B′E,
∵四边形ABCD是正方形,
∴AB=DC=DF,∠B′CE=45°,
∴B′E=B′F,
∴AF=AB′+B′F,
即DF+BE=AF;
(2)图(2)的结论:DF+BE=AF;
图(3)的结论:BE﹣DF=AF;
图(2)的证明:延长CD到点G,使DG=BE,连接AG,
易证△ABE≌△ADG,
∴∠BAE=∠DAG,∠AEB=∠AGD,
∵∠BAE=∠B′AE,
∴∠B′AE=∠DAG,
∴∠GAF=∠DAE,
∵CB∥AD,
∴∠AEB=∠EAD,
∴∠AGD=∠GAF,
∴GF=AF,
∴BE+DF=AF;
图(3)的证明:在BC上取点M,使BM=DF,连接AM,
易证△ABM≌△ADF,
∴∠BAM=∠FAD,AF=AM,
∵△ABE≌AB′E,
∴∠BAE=∠EAB′,
∴∠MAE=∠DAE,
∵AD∥BE,
∴∠AEM=∠DAB,
∴∠MAE=∠AEM,
∴ME=MA=AF,
∴BE﹣DF=AF.
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形 ABCD中,AB 6cm ,BC 12cm ,B 30,点P 在 BC 上由点B向点C 出发,速度为每秒2cm;点Q 在边AD上,同时由点 D 向点 A 运动,速度为每秒1cm ,当点 P 运动到点C时,P 、Q 同时停止运动,连接 PQ,设运动时间为t秒.
(1)当t为何值时四边形 ABPQ 为平行四边形?
(2)当t为何值时,四边形 ABPQ 的面积是四边形 ABCD 的面积的四分之三?
(3)连接 AP ,是否存在某一时刻t,使ABP 为等腰三角形?并求出此刻t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.
(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图已知在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB和AC于点E、F,给出以下五个结论正确的个数有( )
①AE=CF②∠APE=∠CPF ③△BEP≌△AFP④△EPF是等腰直角三角形⑤当∠EPF在△ABC内绕顶点P旋转时(点E不与A、B重合),S四边形AEPF=S△ABC.
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板ABC和三角板BDE(∠ACB=∠DBE=90°,∠ABC=60°)按不同的位置摆放.
(1)如图1,若边BD,BA在同一直线上,则∠EBC= ;
(2)如图2,若∠EBC=165°,那么∠ABD= ;
(3)如图3,若∠EBC=120°,求∠ABD的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知四边形,,点在直线上运动(点和点,不重合,点,,不在同一条直线上),若记,,分别为,,.
图1 图2 图3
(1)如图1,当点在线段上运动时,写出,,之间的关系,并说出理由;
(2)如图2,如果点在线段的延长线上运动,探究,,之间的关系,并说明理由.
(3)如图3,平分,交于点,交于点,且,,,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在下列解答中,填写适当的理由或数学式:
(1)∵EB∥DC, (已知)
∴∠DAE=∠__. ( ___________________________________)
(2)∵∠BCF+∠AFC=180°,(已知)
∴ ____∥___. ( ___________________________________)
(3)∵ ____∥___, (已知)
∴∠EFA=∠ECB . ( ___________________________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(分)如图,管中放置着三根同样的绳子, , .
()小明从这三根绳子中随机选一根,恰好选中绳子的概率是__________.
()小明先从左端, , 三个绳头中随机选两个打一个结,再从右端, , 三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.
(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?
(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com