精英家教网 > 初中数学 > 题目详情
某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).
(1)求调整后楼梯AD的长;
(2)求BD的长.
(结果保留根号)
:解:(1)已知AB=6m,∠ABC=45°,
∴AC=BC=AB•tan45°=6×=3
已知∠ADC=30°.
∴AD=2AC=6
答:调整后楼梯AD的长为6m;
(2)CD=AD•cos30°=6×=3
∴BD=CD﹣BC=3﹣3
答:BD的长为3﹣3(m).
:(1)首先由已知AB=6m,∠ABC=45°求出AC和BC,再由∠ADC=30°求出AD=2AC;
(2)根据勾股定理求出CD,从而求出BD..
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

若圆周角所对弦长为sin,则此圆的半径r为___________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(6分)如图,炮台B在炮台A的正东方向1678m处.两炮台同时发现入侵敌
舰C,炮台A测得敌舰C在它的南偏东40°的方向,炮台B测得敌舰C在它的正南方,试
求敌舰与炮台B的距离.(参考数据:sin40°≈0.643,cos40°≈0.766,tan40°≈0.839)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt中,∠F="90°,点B、C分别在AD、FD上,以AB为直径的半圆O" 过点C,
联结AC,将△AFC 沿AC翻折得且点E恰好落在直径AB上.
(1)判断:直线FC与半圆O的位置关系是_______________;并证明你的结论.
(2)若OB="BD=2,求CE的长."

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•广元)如图,AB是⊙O的直径,BC切⊙O于点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
(1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
(2)求证:=
(3)若BC=AB,求tan∠CDF的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分)如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,
货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正
东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:≈1.41,≈1.73)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本小题满分10分)如图,小丽的家住在世通华庭的电梯公寓AD内,她家的对面新建了一座大厦BC。为了测得大厦的高度,小丽在她家的楼底A处测得大厦顶部B的仰角为60º,爬上楼顶D处测得大厦的顶部B的仰角为30º。已知小丽所住的电梯公寓高82米,请你帮助小丽计算出大厦高度BC及大厦与小丽所住电梯公寓间的距离AC。
(计算结果保留根号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·钦州)(本题满分8分)
某校教学楼后面紧邻着一个山坡,坡上面是一块平地,如图所示,BCADBEAD,斜坡AB长为26米,坡角∠BAD=68°.为了减缓坡面防止山体滑坡,保障安全,学校决定对该斜坡进行改造,经地质人员勘测,当坡角不超过50°时,可确保山体不滑坡.

(1)求改造前坡顶到地面的距离BE的长(精确到0.1米);
(2)如果改造时保持坡脚A不动,坡顶B沿BC向左移11米到F点处,问这样改造能确保安全吗?
(参考数据:sin 68°≈0.93,cos 68°≈0.37,tan 68°≈2.48,sin 58°12’≈0.85,tan 49°30’≈1.17)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(本题满分8分)通过学习三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系.我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图①在△ABC中,AB=AC,顶角A的正对记作sad A,这时sad A.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述角的正对定义,解下列问题:
(1)sad 60°=           .
(2)对于0°<A<180°,∠A的正对值sad A的取值范围是
(3)如图②,在Rt△ABC中,∠C=90°,sin A,试求sad A的值

 

 
 A

 

查看答案和解析>>

同步练习册答案