【题目】在一个不透明的盒子里,装有四个分别标有数字, , , 的小球,它们的形状、大小、质地等完全相同.小强先从盒子里随机取出一个小球,记下数字为x;放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y.
(1)用列表法或画树状图表示出(x,y)的所有可能出现的结果;
(2)求小强、小华各取一次小球所确定的点(x,y)落在一次函数的图象上的概率;
(3)求小强、小华各取一次小球所确定的数x、y满足的概率.
【答案】(1)表格见解析;
(2)P(点落在一次函数的图象上)=;
(3)P()=.
【解析】试题分析:(1)列表得出所有等可能的情况数即可;
(2)找出所确定的点(x,y)落在一次函数y=x﹣1的图象上的情况数,即可求出所求的概率;
(3)找出所确定的数x、y满足y=x﹣1的情况数,即可求出所求的概率.
试题解析:(1)列表如下:
y | ﹣1 | ﹣2 | ﹣3 | ﹣4 |
﹣1 | (﹣1,﹣1) | (﹣1,﹣2) | (﹣1,﹣3) | (﹣1,﹣4) |
﹣2 | (﹣2,﹣1) | (﹣2,﹣2) | (﹣2,﹣3) | (﹣2,﹣4) |
﹣3 | (﹣3,﹣1) | (﹣3,﹣2) | (﹣3,﹣3) | (﹣3,﹣4) |
﹣4 | (﹣4,﹣1) | (﹣4,﹣2) | (﹣4,﹣3) | (﹣4,﹣4) |
(2)所有等可能的情况有16种,其中所确定的点(x,y)落在一次函数y=x﹣1的情况有3种,分别为(﹣1,﹣2);(﹣2,﹣3);(﹣3,﹣4),则P(点落在一次函数的图象上)=;
(3)所有等可能的情况有16种,其中所确定的数x、y满足y=x﹣1的情况有3种,(﹣1,﹣2);(﹣2,﹣3);(﹣3,﹣4),则P()=.
科目:初中数学 来源: 题型:
【题目】雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察分析并回答下列问题.
(1)本次被调查的市民共有多少人?
(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数.
(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某酒店有三人间客房和双人间客房,收费标准:一间三人间每天150元,一间双人间每天140元.为了吸引游客,酒店实行团体入住五折优惠措施,一个46人的旅游团优惠期间到该酒店入住,住了一些三人间和双人间客房,若每间客房正好住满,且一天共花去住宿费1 310元,则该旅游团住了三人间和双人间客房各多少间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知某小区的两幢10层住宅楼间的距离为AC="30" m,由地面向上依次为第1层、第2层、…、第10层,每层高度为3 m.假设某一时刻甲楼在乙楼侧面的影长EC=h,太阳光线与水平线的夹角为α .
(1) 用含α的式子表示h(不必指出α的取值范围);
(2) 当α=30°时,甲楼楼顶B点的影子落在乙楼的第几层?若α每小时增加15°,从此时起几小时后甲楼的影子刚好不影响乙楼采光 ?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com