精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交DC于D,G两点,AD分别于EF,GF交于I,H两点.

(1)求∠FDE的度数;

(2)试判断四边形FACD的形状,并证明你的结论;

(3)当G为线段DC的中点时,

①求证:FD=FI;

②设AC=2m,BD=2n,求⊙O的面积与菱形ABCD的面积之比.

 


解:(1)∵EF是⊙O的直径,∴∠FDE=90°;

(2)四边形FACD是平行四边形.

理由如下:

∵四边形ABCD是菱形,

∴AB∥CD,AC⊥BD,

∴∠AEB=90°.

又∵∠FDE=90°,

∴∠AEB=∠FDE,

∴AC∥DF,

∴四边形FACD是平行四边形;

(3)①连接GE,如图.

∵四边形ABCD是菱形,∴点E为AC中点.

∵G为线段DC的中点,∴GE∥DA,

∴∠FHI=∠FGE.

∵EF是⊙O的直径,∴∠FGE=90°,

∴∠FHI=90°.

∵∠DEC=∠AEB=90°,G为线段DC的中点,

∴DG=GE,

=

∴∠1=∠2.

∵∠1+∠3=90°,∠2+∠4=90°,

∴∠3=∠4,

∴FD=FI;

②∵AC∥DF,∴∠3=∠6.

∵∠4=∠5,∠3=∠4,

∴∠5=∠6,∴EI=EA.

∵四边形ABCD是菱形,四边形FACD是平行四边形,

∴DE=BD=n,AE=AC=m,FD=AC=2m,

∴EF=FI+IE=FD+AE=3m.

在Rt△EDF中,根据勾股定理可得:

n2+(2m)2=(3m)2

即n=m,

∴SO=π()2=πm2,S菱形ABCD=•2m•2n=2mn=2m2

∴SO:S菱形ABCD=

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


用配方法解一元二次方程x2﹣6x﹣4=0,下列变形正确的是(  )

 

A.

(x﹣6)2=﹣4+36

B.

(x﹣6)2=4+36

C.

(x﹣3)2=﹣4+9

D.

(x﹣3)2=4+9

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,⊙O的直径AB=4,∠ABC=30°,BC交⊙O于D,D是BC的中点.

(1)求BC的长;

(2)过点D作DE⊥AC,垂足为E,求证:直线DE是⊙O的切线.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是(  )

 

A.

圆形铁片的半径是4cm

B.

四边形AOBC为正方形

 

C.

弧AB的长度为4πcm

D.

扇形OAB的面积是4πcm2

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,一块余料ABCD,AD∥BC,现进行如下操作:以点B为圆心,适当长为半径画弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径画弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.

(1)求证:AB=AE;

(2)若∠A=100°,求∠EBC的度数.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


永州市双牌县的阳明山风光秀丽,历史文化源远流长,尤以山顶数万亩野生杜鹃花最为壮观,被誉为“天下第一杜鹃红”.今年“五一”期间举办了“阳明山杜鹃花旅游文化节”,吸引了众多游客前去观光赏花.在文化节开幕式当天,从早晨8:00开始每小时进入阳明山景区的游客人数约为1000人,同时每小时走出景区的游客人数约为600人,已知阳明上景区游客的饱和人数约为2000人,则据此可知开幕式当天该景区游客人数饱和的时间约为(  )

 

A.

10:00

B.

12:00

C.

13:00

D.

16:00

 

查看答案和解析>>

科目:初中数学 来源: 题型:


国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为 

查看答案和解析>>

科目:初中数学 来源: 题型:


下列各式,计算正确的是(  )

 

A.

(a+b)2=a2+b2

B.

a•a2=a3

C.

a8÷a2=a4

D.

a3+a2=a5

 

查看答案和解析>>

科目:初中数学 来源: 题型:


解分式方程:=1.

查看答案和解析>>

同步练习册答案