精英家教网 > 初中数学 > 题目详情

【题目】如图,ADAE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,分别求:

(1)∠BAC的度数;

(2)∠AED的度数;

(3)∠EAD的度数.

【答案】(1)80°;(2)70°;(3)20°.

【解析】

(1)根据三角形的内角和即可得到结论;

(2)根据角平分线的定义和三角形的内角和即可得到结论;

(3)根据极品飞车的定义和三角形的内角和即可得到结论.

(1)∵∠B=30°,C=70°,

∴∠BAC=180°﹣BC=80°,

(2)AD为高,

∴∠ADC=90°,

∴∠CAD=90°﹣C=90°﹣70°=20°,

AE为角平分线,

∴∠CAEBAC=40°,

∴∠AED=90°﹣(CAECAD)=90°﹣(40°﹣20°)=70°;

(3)AEABC的角平分线,

∴∠BAEBAC=40°,

又∵ADBC

∴∠BAD=90°﹣B=60°,

∴∠EADBADBAE=60°﹣40°=20°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AE⊥BC于点E点,延长BC至F点使CF=BE,连接AF,DE,DF.
(1)求证:四边形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程指:含有一个未知数,且未知数的最高次数为2的等式,求一元二次方程解的方法如下:第一步:先将等式左边关于x的项进行配方, ,第二步:配出的平方式保留在等式左边,其余部分移到等式右边,;第三步:根据平方的逆运算,求出-3;第四步:求出.类比上述求一元二次方程根的方法,(1)解一元二次方程:

2)求代数式的最小值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.

1)请你帮助学校设计所有可行的租车方案.

2)如果甲车的租金为每辆2 000元,乙车的租金为每辆1 800元,问哪种可行方案使租车费用最省?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义: 如果矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的覆盖矩形.点A,B,C的所有覆盖矩形中,面积最小的矩形称为点A,B,C的最优覆盖矩形.例如,下图中的矩形A1B1C1D1 , A2B2C2D2 , AB3C3D3都是点A,B,C的覆盖矩形,其中矩形AB3C3D3是点A,B,C的最优覆盖矩形.

(1)已知A(﹣2,3),B(5,0),C(t,﹣2). ①当t=2时,点A,B,C的最优覆盖矩形的面积为
②若点A,B,C的最优覆盖矩形的面积为40,求直线AC的表达式;

(2)已知点D(1,1).E(m,n)是函数y= (x>0)的图象上一点,⊙P是点O,D,E的一个面积最小的最优覆盖矩形的外接圆,求出⊙P的半径r的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上AB两点对应的有理数分别为xA=﹣5xB6,动点P从点A出发,以每秒1个单位的速度沿数轴在AB之间往返运动,同时动点Q从点B出发,以每秒2个单位的速度沿数轴在BA之间往返运动.设运动时间为t秒.

(1)t2时,点P对应的有理数xP______PQ______

(2)0t11时,若原点O恰好是线段PQ的中点,求t的值;

(3)我们把数轴上的整数对应的点称为“整点”,当PQ两点第一次在整点处重合时,直接写出此整点对应的数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,A(﹣2,0),B(0,4),以B点为直角顶点在第二象限作等腰直角△ABC

(1)求C点的坐标;

(2)在坐标平面内是否存在一点P,使△PAB与△ABC全等?若存在,求出P点坐标,若不存在,请说明理由;

(3)如图2,点Ey轴正半轴上一动点,以E为直角顶点作等腰直角△AEM,过MMNx轴于N,求OEMN的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AEAB,AFAC,AE=AB,AF=AC.求证:(1)EC=BF;(2)ECBF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

时间(第x天)

1

3

6

10

日销售量(m件)

198

194

188

180

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1≤x<50

50≤x≤90

销售价格(元/件)

x+60

100


(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

查看答案和解析>>

同步练习册答案