精英家教网 > 初中数学 > 题目详情

【题目】一元二次方程指:含有一个未知数,且未知数的最高次数为2的等式,求一元二次方程解的方法如下:第一步:先将等式左边关于x的项进行配方, ,第二步:配出的平方式保留在等式左边,其余部分移到等式右边,;第三步:根据平方的逆运算,求出-3;第四步:求出.类比上述求一元二次方程根的方法,(1)解一元二次方程:

2)求代数式的最小值;

【答案】1;(22

【解析】

1)方程两边都除以9变形后,常数项移到右边,两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并,开方后转化为两个一元一次方程来求解;

2)多项式常数项7分为3+4,重新结合后,利用完全平方公式变形,根据完全平方式大于等于0,即可求出多项式的最小值.

19x2+6x-8=0

变形得:x2+x=

配方得:x2+x+=1,即(x+2=1

开方得:x+=±1

解得:x1=x2=

29x2+y2+6x-4y+7=9x2+x++y2-4y+4+2=9x+2+y-22+2

x=-y=2时,原式取最小值2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点EF在直线AB上,点G在线段CD上,EDFG交于点H,∠C=∠EFG,∠CED=∠GHD

1)求证:CEGF

2)试判断∠AED与∠D之间的数量关系,并说明理由;

3)若∠EHF80°,∠D30°,求∠AEM的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:BOA是一条公路,河流OP恰好经过桥O平分∠AOB.

(1)如果要从P处移动到公路上路径最短,除图中所示PM外,还可以选择PN,求作这条路径,两条路径的关系是______,理由是___________.

(2)河流下游处有一点Q,如果要从P点出发,到达公路OA上的点C后再前往点Q,请你画出一条最短路径,表明点C的位置.

(3)D点在公路OB上,O点到D点的距离与C点相等,作出△CDP,求证:△CDP为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请根据图中信息回答下列问题:

(1)一个暖瓶与一个水杯分别是多少元?

(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某人想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课题学习:设计概率模拟实验. 在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是 .”小海、小东、小英分别设计了下列三个模拟实验:
小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;
小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上1至8个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;
小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.

根据以上材料回答问题:
小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的是( )

A. 平面内,没有公共点的两条线段平行

B. 平面内,没有公共点的两条射线平行

C. 没有公共点的两条直线互相平行

D. 互相平行的两条直线没有公共点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长
最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数表达式为y=2(x+ )(x>0).
【探索研究】
小彬借鉴以前研究函数的经验,先探索函数y=x+ 的图象性质.
(1)结合问题情境,函数y=x+ 的自变量x的取值范围是x>0,如表是y与x的几组对应值.

x

1

2

3

m

y

4

3

2

2

2

3

4

①写出m的值;
②画出该函数图象,结合图象,得出当x=时,y有最小值,y最小=
(2)【解决问题】
直接写出“问题情境”中问题的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ADAE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,分别求:

(1)∠BAC的度数;

(2)∠AED的度数;

(3)∠EAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R.对于一个点与等边三角形,给出如下定义:满足r≤d≤R的点叫做等边三角形的中心关联点. 在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣ ,﹣1),C( ,﹣1).

(1)已知点D(2,2),E( ,1),F(﹣ ,﹣1).在D,E,F中,是等边△ABC的中心关联点的是
(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°. ①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;
②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(直接写出答案,不需过程)
(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为 .当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案