精英家教网 > 初中数学 > 题目详情

【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天内日销售量(m件)与时间(第x天)满足一次函数关系,部分数据如下表:

时间(第x天)

1

3

6

10

日销售量(m件)

198

194

188

180

②该产品90天内每天的销售价格与时间(第x天)的关系如下表:

时间(第x天)

1≤x<50

50≤x≤90

销售价格(元/件)

x+60

100


(1)求m关于x的一次函数表达式;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品哪天的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.

【答案】
(1)

解:∵m与x成一次函数,

∴设m=kx+b,将x=1,m=198,x=3,m=194代入,得:

解得:

所以m关于x的一次函数表达式为m=﹣2x+200


(2)

解:设销售该产品每天利润为y元,y关于x的函数表达式为:

当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,

∵﹣2<0,

∴当x=40时,y有最大值,最大值是7200;

当50≤x≤90时,y=﹣120x+12000,

∵﹣120<0,

∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;

综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元


(3)

解:在该产品销售的过程中,共有46天销售利润不低于5400元


【解析】(1)根据待定系数法解出一次函数解析式即可;(2)设利润为y元,则当1≤x<50时,y=﹣2x2+160x+4000;当50≤x≤90时,y=﹣120x+12000,分别求出各段上的最大值,比较即可得到结论;(3)直接写出在该产品销售的过程中,共有46天销售利润不低于5400元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ADAE分别是△ABC的高和角平分线,∠B=30°,∠C=70°,分别求:

(1)∠BAC的度数;

(2)∠AED的度数;

(3)∠EAD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设平面内一点到等边三角形中心的距离为d,等边三角形的内切圆半径为r,外接圆半径为R.对于一个点与等边三角形,给出如下定义:满足r≤d≤R的点叫做等边三角形的中心关联点. 在平面直角坐标系xOy中,等边△ABC的三个顶点的坐标分别为A(0,2),B(﹣ ,﹣1),C( ,﹣1).

(1)已知点D(2,2),E( ,1),F(﹣ ,﹣1).在D,E,F中,是等边△ABC的中心关联点的是
(2)如图1,过点A作直线交x轴正半轴于M,使∠AMO=30°. ①若线段AM上存在等边△ABC的中心关联点P(m,n),求m的取值范围;
②将直线AM向下平移得到直线y=kx+b,当b满足什么条件时,直线y=kx+b上总存在等边△ABC的中心关联点;(直接写出答案,不需过程)
(3)如图2,点Q为直线y=﹣1上一动点,⊙Q的半径为 .当Q从点(﹣4,﹣1)出发,以每秒1个单位的速度向右移动,运动时间为t秒.是否存在某一时刻t,使得⊙Q上所有点都是等边△ABC的中心关联点?如果存在,请直接写出所有符合题意的t的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是某新建厂区示意图,∠A=75°,∠B=45°,BC⊥CD,AB=500 米,AD=200米,现在要在厂区四周建围墙,求围墙的长度有多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,m)在边AB上,反比例函数y= (k≠0)在第一象限内的图象经过点D、E,且cos∠BOA=

(1)求边AB的长;
(2)求反比例函数的解析式和m的值;
(3)若反比例函数的图象与矩形的边BC交于点F,点G、H分别是y轴、x轴上的点,当△OGH≌△FGH时,求线段OG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( )

(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】张庄甲、乙两家草莓采摘园的草莓销售价格相同,春节期间,两家采摘园将推出优惠方案,甲园的优惠方案是:游客进园需购买门票,采摘的草莓六折优惠;乙园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,某游客的草莓采摘量为千克),在甲园所需总费用为),在乙园所需总费用为),之间的函数关系如图所示,折线OAB表示之间的函数关系.

(1)甲采摘园的门票是 元,两个采摘园优惠前的草莓单价是每千克 元;

(2)当>10时,求的函数表达式;

(3)游客在春节期间采摘多少千克草莓时,甲、乙两家采摘园的总费用相同.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若数a使关于x的分式方程 + =4的解为正数,且使关于y的不等式组 的解集为y<﹣2,则符合条件的所有整数a的和为(
A.10
B.12
C.14
D.16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】销售有限公司到某汽车制造有限公司选购AB两种型号的轿车,用300万元可购进A型轿车10辆,B型轿车15辆;用300万元可购进A型轿车8辆,B型轿车18.

(1)AB两种型号的轿车每辆分别多少元?

(2)若该汽车销售公司销售一辆A型轿车可获利8000元,销售一辆B型轿车可获利5000元,该汽车销售公司准备用不超过400万元购进AB两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元,问:有几种购车方案?在这几种购车方案中,哪种获利最多?

查看答案和解析>>

同步练习册答案