【题目】二次函数y=ax2+c的图象经过点A(﹣4,3),B(﹣2,6),点A关于抛物线对称轴的对称点为点C,点P是抛物线对称轴右侧图象上的一点,点G(0,﹣1).
(1)求出点C坐标及抛物线的解析式;
(2)若以A,C,P,G为顶点的四边形面积等于30时,求点P的坐标;
(3)若Q为线段AC上一动点,过点Q平行于y轴的直线与过点G平行于x轴的直线交于点M,将△QGM沿QG翻折得到△QGN,当点N在坐标轴上时,求Q点的坐标.
【答案】(1)y=﹣x2+7,点C的坐标为(4,3);(2)P点坐标为(,)或(6,﹣2);(3)Q点坐标为(﹣4,3)或(﹣4,﹣3)或(﹣,3)或(,3).
【解析】(1)利用待定系数法求抛物线解析式,然后利用抛物线的对称性确定C点坐标;
(2)设P(x,﹣x2+7)(x>0),讨论:当点P在AC上方时,如图1,利用S四边形AGCP=S△GAC+S△PAC列方程84+8(﹣x2+7﹣3)=30,当点P在AC下方时,如图2,AC与y轴交于点E,利用S四边形AGPC=S△GAE+S△PEG+S△PEC列方程44+x4+4(3+x2﹣7)=30,然后分别解方程可得到对应的P点坐标;
(3)当点N落在y轴上,如图3,利用折叠性质得∠QNG=∠QMG=90°,QN=QM=4,易得Q点的坐标;当点N落在x轴上,QM与x轴交于点F,如图4,设Q(t,3)(﹣4≤t<0),利用折叠性质得∠QNG=∠QMG=90°,QN=QM=4,GN=GM=﹣t,由于FN=,OF=﹣t,ON=,则﹣t=,解方程得到此时Q点的坐标,当0<t≤4,同理可得Q点的坐标.
(1)∵二次函数y=ax2+c的图象经过点A(﹣4,3),B(﹣2,6),∴,解得:,∴抛物线的解析式为y=﹣x2+7.
∵二次函数y=ax2+c的图象的对称轴为y轴,点A(﹣4,3),∴点C的坐标为(4,3).
(2)设P(x,﹣x2+7)(x>0),当点P在AC上方时,如图1,S四边形AGCP=S△GAC+S△PAC=84+8(﹣x2+7﹣3),∴84+8(﹣x2+7﹣3)=30,解得:x1=,x2=﹣(舍去),此时P点坐标为();
当点P在AC下方时,如图2,AC与y轴交于点E,S四边形AGPC=S△GAE+S△PEG+S△PEC=44+x4+4(3+x2﹣7),∴44+x4+4(3+x2﹣7)=30,解得:x1=6,x2=﹣10(舍去),此时P点坐标为(6,﹣2).
综上所述:P点坐标为()或(6,﹣2);
(3)QN=3﹣(﹣1)=4,当点N落在y轴上,如图3.
∵△QGM沿QG翻折得到△QGN,∴∠QNG=∠QMG=90°,QN=QM=4,∴N点为AC与y轴的交点,∴Q点的坐标为(﹣4,3)或(﹣4,﹣3);
当点N落在x轴上,QM与x轴交于点F,如图4,设Q(t,3)(﹣4≤t<0)
∵△QGM沿QG翻折得到△QGN,∴∠QNG=∠QMG=90°,QN=QM=4,GN=GM=﹣t.在Rt△OFN中,FN==,而OF=﹣t,ON=﹣t=,解得:t=﹣,此时Q点的坐标为(﹣,3),当0<t≤4,易得Q点的坐标为(,3).
综上所述:Q点坐标为(﹣4,3)或(﹣4,﹣3)或(﹣,3)或(,3).
科目:初中数学 来源: 题型:
【题目】威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.
(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?
(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中.
(1)AB中点P经过的路径长_____.
(2)点C运动的路径长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图:点(1,3)在函数y=(x>0)的图象上,矩形ABCD的边BC在x轴上,E是对角线BD的中点,函数y=(x>0)的图象又经过A、E两点,点E的横坐标为m,解答下列问题:
(1)求k的值;
(2)求点A的坐标;(用含m代数式表示)
(3)当∠ABD=45°时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,一次函数y=(1-3k)x+2k-1,试回答:
(1)k为何值时,y随x的增大而减小?
(2)k为何值时,图像与y轴交点在x轴上方?
(3) 若一次函数y=(1-3k)x+2k-1经过点(3,4).请求出一次函数的表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.
(1)在图1中,画一个三角形,使它的三边长都是有理数;
(2)在图2中,画一个三角形,使它的三边长分别为3,2,;
(3)在图3中,画一个三角形,使它的三边都是无理数,并且构成的三角形是直角三角形。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com