精英家教网 > 初中数学 > 题目详情
5.【问题情境】王老师给爱钻研的小明和小亮提出这样一个问题:
如图①所示,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F,求证:PD+PE=CF.
小明的证明思路是:
如图②所示,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.
小亮的证明思路是:
如图②所示,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.

【变式探究】如图③所示,当点P在BC的延长线上时,其余条件不变,求证:PD-PE=CF;
请运用上述解答中所积累的经验和方法完成下列两题:
【结论运用】
如图④所示,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若D=8,CF=3,求PG+PH的值;
【迁移拓展】
如图⑤所示是一个航模的截面示意图,在四边形ABCD中,E为AB边长的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=2$\sqrt{13}$dm,AD=3dm,BD=$\sqrt{37}$dm.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.

分析 【问题情境】如下图②,按照小明、小亮的证明思路即可解决问题.
【变式探究】如下图③,借鉴小明、小亮的证明思路即可解决问题.
【结论运用】易证BE=BF,过点E作EQ⊥BF,垂足为Q,如下图④,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,BF=DF,只需求出BF即可.
【迁移拓展】由条件AD•CE=DE•BC联想到三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题

解答 解:【问题情境】证明:(方法1)连接AP,如图②
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP+S△ACP
∴$\frac{1}{2}$AB•CF=$\frac{1}{2}$AB•PD+$\frac{1}{2}$AC•PE.
∵AB=AC,
∴CF=PD+PE.
(方法2)过点P作PG⊥CF,垂足为G,如图②.
∵PD⊥AB,CF⊥AB,PG⊥FC,
∴∠CFD=∠FDP=∠FGP=90°.
∴四边形PDFG是矩形.
∴DP=FG,∠DPG=90°.
∴∠CGP=90°.
∵PE⊥AC,
∴∠CEP=90°.
∴∠PGC=∠CEP.
∵∠BDP=∠DPG=90°.
∴PG∥AB.
∴∠GPC=∠B.
∵AB=AC,
∴∠B=∠ACB.
∴∠GPC=∠ECP.
在△PGC和△CEP中,
$\left\{\begin{array}{l}{∠PGC=∠CEP}\\{∠GPC=∠ECP}\\{PC=CP}\end{array}\right.$,
∴△PGC≌△CEP.
∴CG=PE.
∴CF=CG+FG
=PE+PD.

【变式探究】
证明:连接AP,如图③.
∵PD⊥AB,PE⊥AC,CF⊥AB,
且S△ABC=S△ABP-S△ACP
∴$\frac{1}{2}$AB•CF=$\frac{1}{2}$AB•PD-$\frac{1}{2}$AC•PE.
∵AB=AC,
∴CF=PD-PE.

【结论运用】过点E作EQ⊥BC,垂足为Q,如图④,
∵四边形ABCD是矩形,
∴AD=BC,∠C=∠ADC=90°.
∵AD=8,CF=3,
∴BF=BC-CF=AD-CF=5.
由折叠可得:DF=BF,∠BEF=∠DEF.
∴DF=5.
∵∠C=90°,
∴DC=$\sqrt{D{F}^{2}-C{F}^{2}}$=4.
∵EQ⊥BC,∠C=∠ADC=90°,
∴∠EQC=90°=∠C=∠ADC.
∴四边形EQCD是矩形.
∴EQ=DC=4.
∵AD∥BC,
∴∠DEF=∠EFB.
∵∠BEF=∠DEF,
∴∠BEF=∠EFB.
∴BE=BF.
由问题情境中的结论可得:PG+PH=EQ.
∴PG+PH=4.
∴PG+PH的值为4.

【迁移拓展】延长AD、BC交于点F,作BH⊥AF,垂足为H,如图⑤.
∵AD•CE=DE•BC,
∴$\frac{AD}{DE}=\frac{BC}{EC}$,
∵ED⊥AD,EC⊥CB,
∴∠ADE=∠BCE=90°.
∴△ADE∽△BCE.
∴∠A=∠CBE.
∴FA=FB.
由问题情境中的结论可得:ED+EC=BH.
设DH=xdm,
则AH=AD+DH=(3+x)dm.
∵BH⊥AF,
∴∠BHA=90°.
∴BH2=BD2-DH2=AB2-AH2
∵AB=2$\sqrt{13}$,AD=3,BD=$\sqrt{37}$,
∴($\sqrt{37}$)2-x2=(2$\sqrt{13}$)2-(3+x)2
解得:x=1.
∴BH2=BD2-DH2
=37-1=36.
∴BH=6dm.
∴ED+EC=6.
∵∠ADE=∠BCE=90°,
且M、N分别为AE、BE的中点,
∴DM=AM=EM=$\frac{1}{2}$AE,CN=BN=EN=$\frac{1}{2}$BE.
∴△DEM与△CEN的周长之和
=DE+DM+EM+CN+EN+EC
=DE+AE+BE+EC
=DE+AB+EC
=DE+EC+AB
=6+2$\sqrt{13}$.
∴△DEM与△CEN的周长之和为(6+2$\sqrt{13}$)dm.

点评 本题考查了矩形的性质与判定、等腰三角形的性质与判定、全等三角形的性质与判定、相似三角形的性质与判定、平行线的性质与判定、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,考查了用面积法证明几何问题,考查了运用已有的经验解决问题的能力,体现了自主探究与合作交流的新理念,是充分体现新课程理念难得的好题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.实数a在数轴上的位置如图所示,化简|a-2|+$\sqrt{{a}^{2}-8a+16}$=2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.关于x的一元二次方程(x-2)2=k+2有解,则k的取值范围是k≥-2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,矩形ABCD沿AE折叠,使点D落在BC边上的F点处,AD=5,AB=4,求CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.若将正整数1、2、3、…98写在一起,则可以构成一个新的数字12345…91011…9798.
(1)这个新数是一个几位数?
(2)这个新数各个位上的数字之间和为多少?
(3)在黑板上写上数1、2、3、…98,每次擦去任意两个数,换上这两个数的和或差,重复这样的操作连续若干次,直到黑板上仅留下一个数为止.这个数是否可能为2004?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,直角坐标系中一条圆弧经过正方形网格的格点A(0,4)、B(4,4)、C(6,2).
(1)利用网格画出该圆弧所在圆的圆心P的位置(不写作法,保留作图痕迹).
(2)连结PA、PC、AC,直接写出P的坐标和∠APC度数.
(3)求出弓形ABC的面积.
(4)若把扇形PAC围成一个圆锥,求围成圆锥的底面半径.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图所示,有一块直角三角板XYZ放置在△ABC中,三角板的两条直角边XY和XZ恰好分别经过点B和点C.
(1)若∠A=30°,则∠ABX+∠ACX的大小是多少?
(2)若改变三角板的位置,但仍使点B,点C在三角板的边XY和边XZ上,此时∠ABX+∠ACX的大小有变化吗?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列描述不属于定义的是(  )
A.两组对边分别平行的四边形叫做平行四边形
B.正三角形是特殊的等腰三角形
C.在同一平面内三条线段首尾顺次连接得到的图形叫做三角形
D.含有未知数的等式叫做方程

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.跳远运动员李刚对训练效果进行测试,6次跳远的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9.(单位:m)这六次成绩的平均数为7.8,方差为$\frac{1}{60}$.如果李刚再跳两次,成绩分别为7.7,7.9.则李刚这8次跳远成绩的方差变小(填“变大”、“不变”或“变小”).

查看答案和解析>>

同步练习册答案