9£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Å×ÎïÏßy=-x2+2x+3ÓëxÖá½»ÓÚA£¬BÁ½µã£¨µãAÔÚµãB×ó²à£©£¬ÓëyÖá½»ÓÚCµã£®¶¯µãP´ÓµãB³ö·¢£¬ÑØxÖḺ·½ÏòÒÔÿÃë1¸öµ¥Î»µÄËÙ¶ÈÔ˶¯£®¹ýµãP×÷PQ¡ÍBC£¬´¹×ãΪQ£¬ÔÙ½«¡÷PBQÈÆµãP°´ÄæÊ±Õë·½ÏòÐýת90¡ã£®ÉèµãPµÄÔ˶¯Ê±¼äΪtÃ룮
£¨1£©ÈôÐýתºóµÄµãBÂäÔÚ¸ÃÅ×ÎïÏßÉÏ£¬ÔòtµÄֵΪ3£®
£¨2£©ÈôÐýתºóµÄ¡÷PBQÓë¸ÃÅ×ÎïÏßÓÐÁ½¸ö¹«¹²µã£¬ÔòtµÄȡֵ·¶Î§ÊÇ4£¾t£¾$\frac{22}{9}$£®

·ÖÎö ÉóÌâ¿ÉÖª£ºÅ×ÎïÏßÒÑÖª£¬¿ÉÒÔÏÈÇó³öÓë×ø±êÖáµÄ½»µã×ø±ê£¬È·¶¨Èý½ÇÐÎPBQÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬Ðýת90¡ãºó£¬
£¨1£©ÓÃt±íʾ³öµãBµÄ×ø±ê£¬´úÈë¶þ´Îº¯Êý½âÎöʽ£¬Çó½â¼´¿É£»
£¨2£©ÓÃt±íʾÐýתºóµÄµãBºÍµãQµÄ×ø±ê£¬½áºÏ¶þ´Îº¯Êý½âÎöʽÁгö²»µÈʽ£¬Çó³ö±ßPQ£¬PB£¬BQÓëÅ×ÎïÏßÓн»µãµÄ·¶Î§£¬Ð´³ö·¶Î§¼´¿É£®

½â´ð ½â£ºy=-x2+2x+3£¬µ±x=0ʱ£¬½âµÃ£ºy=3£¬ËùÒÔOC=3£»
µ±y=0ʱ£¬0=-x2+2x+3£¬½âµÃ£ºx1=-1£¬x2=3£¬ËùÒÔ£ºOA=1£¬OB=3£¬
ËùÒÔ£ºA£¨-1£¬0£©£¬B£¨3£¬0£©£¬C£¨0£¬3£©
¡ßOC=OB=3£¬¿ÉÖª£º¡ÏOBC=45¡ã
¡ßPQ¡ÍBC£¬
¡à¡÷PBQÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬PQ=PB£¬
Ô˶¯tÃëºó£¬PB=t£¬ÔËÓù´¹É¶¨Àí¿ÉÇóBQ=PQ=$\frac{\sqrt{2}}{2}$t£¬½«¡÷PBQÈÆµãP°´ÄæÊ±Õë·½ÏòÐýת90¡ãºó£¬PB¡ÍxÖᣬ¹ýµãQ×÷QM¡ÍxÖᣬ´¹×ãΪM£¬¿ÉÇó¡ÏQPM=45¡ã£¬
Óɹ´¹É¶¨Àí¿ÉÇó£ºPM=QM=$\frac{1}{2}$t£¬
ËùÒÔP£¨3-t£¬0£©£¬Q£¨3-$\frac{3t}{2}$£¬$\frac{t}{2}$£©£¬µãB£¨3-t£¬t£©£¬
£¨1£©°ÑµãB£¨3-t£¬t£©×ø±ê´úÈëy=-x2+2x+3µÃ£ºt=-£¨3-t£©2+2£¨3-t£©+3£¬½âµÃ£ºt=3£¬»òt=0£¨ÉáÈ¥£©
ËùÒÔ£ºt=3£®
¹Ê´ð°¸Îª£º3
£¨2£©ÈôPBÓëÅ×ÎïÏßy=-x2+2x+3Óн»µã£¬ÓÉÓÚµãB£¨3-t£¬t£©£¬ÔòÓУºµ±x=3-tʱ£¬y£¼t£¬ÇÒ3-t£¼-1£¬´úÈëµÃ£º-£¨3-t£©2+2£¨3-t£©+3¡Üt£¬
½âµÃ£º4£¾t¡Ý3£¬»òt¡Ü0£¨ÉáÈ¥£©
ÈôPQ£¬BQÓëÅ×ÎïÏßy=-x2+2x+3ÓÐÁ½¸ö²»Í¬½»µã£¬ÓÉÓÚQ£¨3-$\frac{3t}{2}$£¬$\frac{t}{2}$£©£¬ÔòÓУ»µ±x=3-$\frac{3t}{2}$ʱ£¬y£¼$\frac{t}{2}$£¬ÇÒ3-t£¼-1£¬´úÈëµÃ£º£º-£¨3-$\frac{3t}{2}$£©2+2£¨3-$\frac{3t}{2}$£©+3¡Ü$\frac{t}{2}$£¬
½âµÃ£º4£¾t£¾$\frac{22}{9}$£¬»òt¡Ü0£¨ÉáÈ¥£©
ËùÒÔ£ºµ±4£¾t¡Ý3ʱ£¬PBÓëPQÓëÅ×ÎïÏßÓн»µã£»µ±3¡Ýt£¾$\frac{22}{9}$ʱ£¬PQºÍBQÓëÅ×ÎïÏßÓн»µã£¬
×ÛÉÏËùÊö£º
ÈôÐýתºóµÄ¡÷PBQÓë¸ÃÅ×ÎïÏßÓÐÁ½¸ö¹«¹²µã£¬ÔòtµÄȡֵ·¶Î§ÊÇ£º4£¾t£¾$\frac{22}{9}$
¹Ê´ð°¸Îª£º4£¾t£¾$\frac{22}{9}$

µãÆÀ ´ËÌâÖ÷Òª¿¼²ìÏß¶ÎÓëÅ×ÎïÏߵĽ»µã£¬¸ù¾ÝÒÑÖªÉè³öµãµÄ×ø±ê£¬½áºÏÌâÒâÁгö²»µÈʽÊǽâÌâµÄ¹Ø¼ü£¬ÆäÖнâÒ»Ôª¶þ´Î²»µÈʽ¿ÉÒÔ¸ù¾Ý»­¶þ´Îº¯ÊýµÄͼÏó½â´ð£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Èô|a|=4£¬-b=3£¬Ôòa+b=1»ò-7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÏÂÁÐ˵·¨ÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®0¼È²»ÊÇÕýÊýÒ²²»ÊǸºÊýB£®×î´óµÄ¸ºÊýÊÇ-1
C£®Ã»Óоø¶ÔÖµ×îСµÄÊýD£®-2.1²»ÊÇ·ÖÊý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èçͼ£¬´óÕý·½Ðεı߳¤Îªa£¬Ð¡Õý·½Ðεı߳¤Îª2£¬ÔòÒõÓ°²¿·ÖµÄÃæ»ý=a£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖª¹ØÓÚxµÄ·½³Ìx2-x-1=0µÄÁ½¸ù·Ö±ðΪx1x2£¬ÊÔÇóÏÂÁдúÊýʽµÄÖµ£º
£¨1£©x12+x22
£¨2£©$\frac{1}{x_1}+\frac{1}{x_2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏACB=90¡ã£¬CA=CB£¬µãPÔÚ¡÷ABCÄÚ£¬ÇÒPA=3£¬PB=1£¬PC=2£¬Çó¡÷CPBµÄ¶ÈÊý£®Ð¡¶«Í¬Ñ§³¢ÊÔÔÚCPµÄÓÒ²à×÷CD¡ÍCP£¬²¢½ØÈ¡CD=CP£¬ÔÙÁ¬½ÓDP¡¢DB£¬Ê¹ÎÊÌâ»ñ½â£ºÐ¡Î÷ͬѧ°ÑCD»­ÔÚCPµÄ×ó²à£¬Í¬ÑùҲʹÎÊÌâ»ñ½â£¬ÇëÄã·Ö±ðÔÚÏÂÃæµÄÁ½¸öͼÖл­³öС¶«ºÍСÎ÷Ïëµ½µÄ¸¨ÖúÏߣ¬²¢Ñ¡ÔñÆäÖеÄÒ»ÖÖд³ö½â´ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®£¨¦Ð-2015£©0µÄÖµÊÇ£¨¡¡¡¡£©
A£®¦Ð-2015B£®2015-¦ÐC£®0D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑ֪ʵÊýa¡¢bÔÚÊýÖáÉϱíʾµÄµãÈçͼ£¬»¯¼ò|a+b|+$\sqrt{{{£¨a-b+1£©}^2}}$µÄ½á¹ûΪ£¨¡¡¡¡£©
A£®2b-1B£®2a+1C£®-2a-1D£®-2b+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÓÐËĸöʵÊý·Ö±ðÊÇ|-3|£¬$\frac{¦Ð}{2}$£¬$\sqrt{9}$£¬$\frac{4}{¦Ð}$£¬ÇëÄã¼ÆËãÆäÖÐÓÐÀíÊýµÄºÍÓëÎÞÀíÊýµÄ»ýµÄ²î£¬¼ÆËã½á¹ûÊÇ4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸