精英家教网 > 初中数学 > 题目详情

【题目】(本题满分9分)为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度。一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域。如图所示,AB=60海里,在B处测得C在北偏东45的方向上,A处测得C在北偏西30的方向上,在海岸线AB上有一灯塔D,测得AD=120海里。

(1)(4分)分别求出A与C及B与C的距离AC,BC(结果保留根号)

(2)(5分)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,途中有无触礁的危险?(参考数据:=1.41,=1.73,=2.45)

【答案】(1)AC=120海里 ,BC=120海里;(2)无触礁危险.

【解析】

试题分析:(1)过点C作CEAB于E,解直角三角形即可求出A与C及B与C的距离AC,BC;(2)过点D作DFAC于F,解直角三角形即可求出DF的长,再比较与100的大小,从而得出结论有无触礁的危险.

试题解析: 作CEAB于E, 设AE=x

则在ACE中,CE= x AC=2 x

BCE中,BE=CE=x BC= x

由AB=AE+BE x+ x=60()

解得x=60

所以AC=120(海里) ,BC=120(海里)

作DFAC于F,

AFD中,DF=DA

DF=×60()=60(3) 106.8>100

所以无触礁危险.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】分别取9的一个平方根和4的一个平方根相加,其可能结果为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】求解:已知:如图1,P为△ADC内一点,DP、CP分别平分DP、CP分别平分∠ADC和∠ACD。

(1)如果∠A=60°,那么∠P是多少度;如果∠A=90°,那么∠P是多少度;如果∠A=x°,则∠P是多少度?
(2)如图2,P为四边形ABCD内一点,DP、CP分别平分∠ADC和∠BCD,试探究∠P与∠A+∠B的数量关系,并写出你的探索过程;
(3)如图3,P为五边形ABCDE内一点,DP、CP分别平分DP、CP分别平分∠ADC和∠ACD,请直接写出∠P与∠A+∠B+∠E的数量关系。
(4)如图4,P为六边形ABCDEF内一点,DP、CP分别平分DP、CP分别平分∠ADC和∠ACD,请直接写出∠P与∠A+∠B+∠E+∠F的数量关系。
(5)若P为n边形A1A2A3…An内一点,PA1平分∠AnA1A2 , PA2平分∠A1A2A3 , 请直接写出∠P与∠A3+A4+A5+…∠An的数量关系。(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC面积为1,第一次操作:分别延长AB,BC,CA至点A1 , B1 , C1 , 使A1B=AB,B1C=BC,C1A=CA,顺次连接A1 , B1 , C1 , 得到△A1B1C1 . 第二次操作:分别延长A1B1 , B1C1 , C1A1至点A2 , B2 , C2 , 使A2B1=A1B1 , B2C1=B1C1 , C2A1=C1A1 , 顺次连接A2 , B2 , C2 , 得到△A2B2C2 , …按此规律,要使得到的三角形的面积超过2010,最少经过( )次操作.

A.6
B.5
C.4
D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】∠1与∠2是直线a、b被直线c所截得的同位角,∠1与∠2的大小关系是(
A.∠1=∠2
B.∠1>∠2
C.∠1<∠2
D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,BD是对角线,∠ABDCDB,要使四边形ABCD是平行四边形只需添加一个条件,这个条件可以是____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标平面内,已点A(3,0)、B(﹣5,3),将点A向左平移6个单位到达C点,将点B向下平移6个单位到达D点.
(1)写出C点、D点的坐标:C , D
(2)把这些点按A﹣B﹣C﹣D﹣A顺次连接起来,这个图形的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题8分)为深化义务教育课程改革,某校积极开展拓展性课程建设,设计开设艺术、体育、劳技、文学等多个类别的拓展性课程,要求每一位学生都自主选择一个类别的拓展性课程。为了了解学生选择拓展性课程的情况,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图(部分信息未给出):

根据统计图中的信息,解答下列问题:

(1)求本次被调查的学生人数;

(2)将条形图补充完整;

(3)若该校共有1600名学生,请估计全校选择体育类的学生人数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.
(1)求证:BF=DE;
(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.

查看答案和解析>>

同步练习册答案