精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的切线,切点为B,连接AO,OA⊙O交于点C,BD⊙O的直径,连接CD,若∠A=30°,⊙O的半径为4,则图中阴影部分的面积为(

A. B. C. D.

【答案】D

【解析】

O点作OE⊥CDE,首先根据切线的性质和直角三角形的性质可得∠AOB=60°,再根据平角的定义和三角形外角的性质可得∠COD=120°,∠OCD=∠ODC=30°,根据含30°的直角三角形的性质可得OE,CD的长,再根据阴影部分的面积=扇形OCD的面积-三角形OCD的面积,列式计算即可求解.

解:如图,过O点作OE⊥CDE,
∵AB⊙O的切线,
∴∠ABO=90°,
∵∠A=30°,
∴∠AOB=60°,
∴∠COD=120°,∠OCD=∠ODC=30°,
∴OE=OD=2,CE=DE=OD=2
∴CD=2CE=4
∴S阴影=S扇形COD-SCOD=-×4×2=-4
故选D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场,为了吸引顾客,在白色情人节当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.

两红

一红一白

两白

礼金券(元)

18

24

18

1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.

2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBC,ABC=ADC=90°,对角线AC,BD交于点O,DE平分∠ADCBC于点E,连接OE.

(1)求证:四边形ABCD是矩形;

(2)若AB=2,求OEC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O△ABC的外接圆,∠BAC=60°,若⊙O的半径0C2,则弦BC的长为(  )

A. 1

B.

C. 2

D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,把圆形井盖卡在角尺角的两边互相垂直,一边有刻度)之间,即圆与两条直角边相切,现将角尺向右平移10cm,如图2,OA边与圆的两个交点对应CD的长为40cm则可知井盖的直径是(

A. 25cm B. 30cm C. 50cm D. 60cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】勾股定理有着悠久的历史,它曾引起很多人的兴趣,1955年希腊发型了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在如图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQO使得∠O=90°,点Q在在直角坐标系y轴正半轴上,点P在x轴正半轴上,点O与原点重合,∠OQP=60°,点H在边QO上,点D、E在边PO上,点G、F在边PQ上,那么点P坐标为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x轴相交于点A,与直线相交于点P

(1)求点P的坐标.

(2)请判断△OPA的形状并说明理由.

(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E不与点OA重合),过点E分别作EF⊥x轴于FEB⊥y轴于B.设运动t秒时,矩形EBOF△OPA重叠部分的面积为S.求St之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,两个完全相同的正五边形ABCDEAFGHM的边DEMH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,

1)请用尺规作图的方法在边上确定点,使得平分;(保留作图痕迹,不写作法)

2)在(1)的条件下,求证:

查看答案和解析>>

同步练习册答案