精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠C=90°,AC=BC=10cm,长为4cm的线段DE在边AC上,且点D与点A重合,点FDE的中点,线段DE从点A出发,沿AC方向向点C匀速运动,直到点E与点C重合,速度1cm/s。过点FPF⊥AC,交AB于点P,过点PPQ//AC,交BC于点Q,连接PD,PE,QE,设线段DE的运动时间为t(s).(0≤t≤6)

(1)请分别用含有t的代数式表示线段PF、BQ

(2)t为何值时,四边形PFCQ为正方形?

(3)设四边形PDEQ的面积为y(cm)请求出yt之间的函数关系式,并求出当t为何值时,四边形PDEQ的面积最大,最大是多少?

(4)是否存在某一时刻t,使得EP平分∠AEQ?若存在,求出此时t的值;若不存在,请说明理由.

【答案】(1)PF=t+2,BQ=8-t;(2)t=3s;(3)t=5,y=24.5;(4)存在.时,EP平分∠AEQ

【解析】

(1)根据∠C=90°,AC=BC=10cm,可得∠A= ,再根据PFAC可得AF=PF,根据题意可得AF=t+2,CF=8-t,即可得出答案。

(2)PF=PQ时,四边形PFCQ为正方形,列出方程即可。

(3)用矩形DFCQ的面积加上三角形PDF的面积,再减去三角形QEC的面积得到四边形PDEQ的面积,列出yt的函数关系式即可。

(4)先假设得EP平分∠AEQ,则∠AEP=QEP, 再根据 PQ//AC,得出∠AEP=QPE, QEP=QPE,得出QE=QP,列出方程,方程有解就存在,没解就不存在。

(1)∵C=90°,AC=BC=10cm,∴A=B=, ∵PFAC,∴AFP=90°, ∴AF=PF,同理可证,BQ=PQ,∵FDE的中点,DE=4,∴DF=EF=2, ∴AF=t+2,∴PF=t+2,CF=AC-AF=8-t,∵PFAC,C=90°,PQ//AC,则四边形PFCQ是矩形,∴PQ=CF, BQ=CF = 8-t;

(2)∵四边形PFCQ为正方形,∴PF= CF,∴t+2=8-t,∴t=3,∴t=3时四边形PFCQ为正方形

(3)y==(t+2)(8-t)+2(t+2)-(10-t-4)(t+2)

∴y=-+5t+12,∵a=-0,∴当t=5时,=24.5

t=5时,四边形PDEQ的面积最大,最大面积为24.5

(4)∵EP平分∠AEQ,∴AEP=QEP, ∵PQ//AC,∴AEP=QPE, ∴QEP=QPE, ∴QE=QP=8-t, ∴在RtECQ中,

解得:t=,t=(舍去)

存在时,EP平分∠AEQ

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图O的内接ABC中,外角ACF的角平分线与O相交于D点,DPAC,垂足为PDHBF,垂足为H.问:

(1)∠PDCHDC是否相等,为什么?

(2)图中有哪几组相等的线段?

(3)ABC满足什么条件时,CPD∽△CBA,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个二次函数图象上部分点的横坐标x,纵坐标y的对应值如下表:

x

﹣4

﹣3

﹣2

﹣1

0

1

2

3

4

y

0

2

0

m

﹣6

(1)求这个二次函数的表达式;

(2)求m的值;

(3)在给定的直角坐标系中,画出这个函数的图象

(4)根据图象,写出当y0时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线x轴交于点A,与y轴交于点C.抛物线经过AC两点,且与x轴交于另一点BB在点A右侧

1求抛物线的解析式及点B坐标;

2若点M是线段BC上的一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;

3试探究当ME取最大值时,在抛物线上、x轴下方是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】由我国完全自主设计、自主建造的首艘国产航母于20185月成功完成第一次海上试航任务.某日航母在南海海域试航,如图,海中有一个小岛A,并测得该岛四周10海里内有暗礁,航母由西向东航行,开始在A岛南偏西55°B处,往东行驶20海里后到达该岛的南偏西25°C处,之后如果航母继续向东航行,途中会有触礁的危险吗?(参考数据:sin55°=0.8,cos55°=0.6,tan55°=1.4,sin25°=0.4,cos25°=0.9,tan25°=0.5)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如图所示:

(1)请填写下表:

平均数

方差

中位数

命中9环以上(包括9环)次数

7

   

   

   

   

5.4

   

   

(2)请你就下列两个不同的角度对这次测试结果进行

从平均数和方差相结合看(分析谁的成绩更稳定);

从平均数和命中9环(包括9环)以上次数相结合看(分析谁的潜能更大).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,A,B,C三点在⊙O上,且AB是⊙O的直径,半径OD⊥AC,垂足为F,若∠A=30,OF=3,则OA=_____,AC=_____,BC=_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,时,

求一次函数的表达式;

若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-2x经过点P(-2,m),点P关于y轴的对称点P′在反比例函数)的图象上.

(1)求m的值;

(2)直接写出点P′的坐标;

(3)求反比例函数的解析式.

查看答案和解析>>

同步练习册答案